Metamath Proof Explorer


Theorem r1pvsca

Description: Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P=Poly1R
r1padd1.u U=BaseP
r1padd1.n N=Unic1pR
r1padd1.e E=rem1pR
r1pvsca.6 φRRing
r1pvsca.7 φAU
r1pvsca.10 φDN
r1pvsca.1 ×˙=P
r1pvsca.k K=BaseR
r1pvsca.2 φBK
Assertion r1pvsca φB×˙AED=B×˙AED

Proof

Step Hyp Ref Expression
1 r1padd1.p P=Poly1R
2 r1padd1.u U=BaseP
3 r1padd1.n N=Unic1pR
4 r1padd1.e E=rem1pR
5 r1pvsca.6 φRRing
6 r1pvsca.7 φAU
7 r1pvsca.10 φDN
8 r1pvsca.1 ×˙=P
9 r1pvsca.k K=BaseR
10 r1pvsca.2 φBK
11 eqid quot1pR=quot1pR
12 11 1 2 3 q1pcl RRingAUDNAquot1pRDU
13 5 6 7 12 syl3anc φAquot1pRDU
14 1 2 3 uc1pcl DNDU
15 7 14 syl φDU
16 eqid P=P
17 1 16 2 9 8 ply1ass23l RRingBKAquot1pRDUDUB×˙Aquot1pRDPD=B×˙Aquot1pRDPD
18 5 10 13 15 17 syl13anc φB×˙Aquot1pRDPD=B×˙Aquot1pRDPD
19 18 oveq2d φB×˙A-PB×˙Aquot1pRDPD=B×˙A-PB×˙Aquot1pRDPD
20 1 2 3 11 5 6 7 8 9 10 q1pvsca φB×˙Aquot1pRD=B×˙Aquot1pRD
21 20 oveq1d φB×˙Aquot1pRDPD=B×˙Aquot1pRDPD
22 21 oveq2d φB×˙A-PB×˙Aquot1pRDPD=B×˙A-PB×˙Aquot1pRDPD
23 eqid ScalarP=ScalarP
24 eqid BaseScalarP=BaseScalarP
25 eqid -P=-P
26 1 ply1lmod RRingPLMod
27 5 26 syl φPLMod
28 1 ply1sca RRingR=ScalarP
29 5 28 syl φR=ScalarP
30 29 fveq2d φBaseR=BaseScalarP
31 9 30 eqtrid φK=BaseScalarP
32 10 31 eleqtrd φBBaseScalarP
33 1 ply1ring RRingPRing
34 5 33 syl φPRing
35 2 16 34 13 15 ringcld φAquot1pRDPDU
36 2 8 23 24 25 27 32 6 35 lmodsubdi φB×˙A-PAquot1pRDPD=B×˙A-PB×˙Aquot1pRDPD
37 19 22 36 3eqtr4d φB×˙A-PB×˙Aquot1pRDPD=B×˙A-PAquot1pRDPD
38 2 23 8 24 27 32 6 lmodvscld φB×˙AU
39 4 1 2 11 16 25 r1pval B×˙AUDUB×˙AED=B×˙A-PB×˙Aquot1pRDPD
40 38 15 39 syl2anc φB×˙AED=B×˙A-PB×˙Aquot1pRDPD
41 4 1 2 11 16 25 r1pval AUDUAED=A-PAquot1pRDPD
42 6 15 41 syl2anc φAED=A-PAquot1pRDPD
43 42 oveq2d φB×˙AED=B×˙A-PAquot1pRDPD
44 37 40 43 3eqtr4d φB×˙AED=B×˙AED