Metamath Proof Explorer


Theorem r1sdom

Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013)

Ref Expression
Assertion r1sdom AOnBAR1BR1A

Proof

Step Hyp Ref Expression
1 eleq2 x=BxB
2 fveq2 x=R1x=R1
3 2 breq2d x=R1BR1xR1BR1
4 1 3 imbi12d x=BxR1BR1xBR1BR1
5 eleq2 x=yBxBy
6 fveq2 x=yR1x=R1y
7 6 breq2d x=yR1BR1xR1BR1y
8 5 7 imbi12d x=yBxR1BR1xByR1BR1y
9 eleq2 x=sucyBxBsucy
10 fveq2 x=sucyR1x=R1sucy
11 10 breq2d x=sucyR1BR1xR1BR1sucy
12 9 11 imbi12d x=sucyBxR1BR1xBsucyR1BR1sucy
13 eleq2 x=ABxBA
14 fveq2 x=AR1x=R1A
15 14 breq2d x=AR1BR1xR1BR1A
16 13 15 imbi12d x=ABxR1BR1xBAR1BR1A
17 noel ¬B
18 17 pm2.21i BR1BR1
19 elsuci BsucyByB=y
20 sdomtr R1BR1yR1yR1sucyR1BR1sucy
21 20 expcom R1yR1sucyR1BR1yR1BR1sucy
22 fvex R1yV
23 22 canth2 R1y𝒫R1y
24 r1suc yOnR1sucy=𝒫R1y
25 23 24 breqtrrid yOnR1yR1sucy
26 21 25 syl11 R1BR1yyOnR1BR1sucy
27 26 imim2i ByR1BR1yByyOnR1BR1sucy
28 fveq2 B=yR1B=R1y
29 28 breq1d B=yR1BR1sucyR1yR1sucy
30 25 29 imbitrrid B=yyOnR1BR1sucy
31 30 a1i ByR1BR1yB=yyOnR1BR1sucy
32 27 31 jaod ByR1BR1yByB=yyOnR1BR1sucy
33 19 32 syl5 ByR1BR1yBsucyyOnR1BR1sucy
34 33 com3r yOnByR1BR1yBsucyR1BR1sucy
35 limuni Limxx=x
36 35 eleq2d LimxBxBx
37 eluni2 BxyxBy
38 36 37 bitrdi LimxBxyxBy
39 r19.29 yxByR1BR1yyxByyxByR1BR1yBy
40 fvex R1xV
41 ssiun2 yxR1yyxR1y
42 vex xV
43 r1lim xVLimxR1x=yxR1y
44 42 43 mpan LimxR1x=yxR1y
45 44 sseq2d LimxR1yR1xR1yyxR1y
46 41 45 imbitrrid LimxyxR1yR1x
47 ssdomg R1xVR1yR1xR1yR1x
48 40 46 47 mpsylsyld LimxyxR1yR1x
49 id ByR1BR1yByR1BR1y
50 49 imp ByR1BR1yByR1BR1y
51 sdomdomtr R1BR1yR1yR1xR1BR1x
52 51 expcom R1yR1xR1BR1yR1BR1x
53 50 52 syl5 R1yR1xByR1BR1yByR1BR1x
54 48 53 syl6 LimxyxByR1BR1yByR1BR1x
55 54 rexlimdv LimxyxByR1BR1yByR1BR1x
56 39 55 syl5 LimxyxByR1BR1yyxByR1BR1x
57 56 expcomd LimxyxByyxByR1BR1yR1BR1x
58 38 57 sylbid LimxBxyxByR1BR1yR1BR1x
59 58 com23 LimxyxByR1BR1yBxR1BR1x
60 4 8 12 16 18 34 59 tfinds AOnBAR1BR1A
61 60 imp AOnBAR1BR1A