Metamath Proof Explorer


Theorem rabfodom

Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Hypotheses rabfodom.1 φxAy=Fxχψ
rabfodom.2 φAV
rabfodom.3 φF:AontoB
Assertion rabfodom φyB|χxA|ψ

Proof

Step Hyp Ref Expression
1 rabfodom.1 φxAy=Fxχψ
2 rabfodom.2 φAV
3 rabfodom.3 φF:AontoB
4 vex aV
5 4 rabex xa|ψV
6 eqid xaFx=xaFx
7 fof F:AontoBF:AB
8 3 7 syl φF:AB
9 8 feqmptd φF=xAFx
10 9 ad2antrr φa𝒫AFa:a1-1 ontoBF=xAFx
11 10 reseq1d φa𝒫AFa:a1-1 ontoBFa=xAFxa
12 elpwi a𝒫AaA
13 12 ad2antlr φa𝒫AFa:a1-1 ontoBaA
14 13 resmptd φa𝒫AFa:a1-1 ontoBxAFxa=xaFx
15 11 14 eqtrd φa𝒫AFa:a1-1 ontoBFa=xaFx
16 f1oeq1 Fa=xaFxFa:a1-1 ontoBxaFx:a1-1 ontoB
17 16 biimpa Fa=xaFxFa:a1-1 ontoBxaFx:a1-1 ontoB
18 15 17 sylancom φa𝒫AFa:a1-1 ontoBxaFx:a1-1 ontoB
19 simp1ll φa𝒫AFa:a1-1 ontoBxay=Fxφ
20 13 3ad2ant1 φa𝒫AFa:a1-1 ontoBxay=FxaA
21 simp2 φa𝒫AFa:a1-1 ontoBxay=Fxxa
22 20 21 sseldd φa𝒫AFa:a1-1 ontoBxay=FxxA
23 simp3 φa𝒫AFa:a1-1 ontoBxay=Fxy=Fx
24 19 22 23 1 syl3anc φa𝒫AFa:a1-1 ontoBxay=Fxχψ
25 6 18 24 f1oresrab φa𝒫AFa:a1-1 ontoBxaFxxa|ψ:xa|ψ1-1 ontoyB|χ
26 f1oeng xa|ψVxaFxxa|ψ:xa|ψ1-1 ontoyB|χxa|ψyB|χ
27 5 25 26 sylancr φa𝒫AFa:a1-1 ontoBxa|ψyB|χ
28 27 ensymd φa𝒫AFa:a1-1 ontoByB|χxa|ψ
29 rabexg AVxA|ψV
30 2 29 syl φxA|ψV
31 30 ad2antrr φa𝒫AFa:a1-1 ontoBxA|ψV
32 rabss2 aAxa|ψxA|ψ
33 13 32 syl φa𝒫AFa:a1-1 ontoBxa|ψxA|ψ
34 ssdomg xA|ψVxa|ψxA|ψxa|ψxA|ψ
35 31 33 34 sylc φa𝒫AFa:a1-1 ontoBxa|ψxA|ψ
36 endomtr yB|χxa|ψxa|ψxA|ψyB|χxA|ψ
37 28 35 36 syl2anc φa𝒫AFa:a1-1 ontoByB|χxA|ψ
38 foresf1o AVF:AontoBa𝒫AFa:a1-1 ontoB
39 2 3 38 syl2anc φa𝒫AFa:a1-1 ontoB
40 37 39 r19.29a φyB|χxA|ψ