Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabfodom.1 | |
|
rabfodom.2 | |
||
rabfodom.3 | |
||
Assertion | rabfodom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabfodom.1 | |
|
2 | rabfodom.2 | |
|
3 | rabfodom.3 | |
|
4 | vex | |
|
5 | 4 | rabex | |
6 | eqid | |
|
7 | fof | |
|
8 | 3 7 | syl | |
9 | 8 | feqmptd | |
10 | 9 | ad2antrr | |
11 | 10 | reseq1d | |
12 | elpwi | |
|
13 | 12 | ad2antlr | |
14 | 13 | resmptd | |
15 | 11 14 | eqtrd | |
16 | f1oeq1 | |
|
17 | 16 | biimpa | |
18 | 15 17 | sylancom | |
19 | simp1ll | |
|
20 | 13 | 3ad2ant1 | |
21 | simp2 | |
|
22 | 20 21 | sseldd | |
23 | simp3 | |
|
24 | 19 22 23 1 | syl3anc | |
25 | 6 18 24 | f1oresrab | |
26 | f1oeng | |
|
27 | 5 25 26 | sylancr | |
28 | 27 | ensymd | |
29 | rabexg | |
|
30 | 2 29 | syl | |
31 | 30 | ad2antrr | |
32 | rabss2 | |
|
33 | 13 32 | syl | |
34 | ssdomg | |
|
35 | 31 33 34 | sylc | |
36 | endomtr | |
|
37 | 28 35 36 | syl2anc | |
38 | foresf1o | |
|
39 | 2 3 38 | syl2anc | |
40 | 37 39 | r19.29a | |