Metamath Proof Explorer


Theorem rabfodom

Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Hypotheses rabfodom.1 φ x A y = F x χ ψ
rabfodom.2 φ A V
rabfodom.3 φ F : A onto B
Assertion rabfodom φ y B | χ x A | ψ

Proof

Step Hyp Ref Expression
1 rabfodom.1 φ x A y = F x χ ψ
2 rabfodom.2 φ A V
3 rabfodom.3 φ F : A onto B
4 vex a V
5 4 rabex x a | ψ V
6 eqid x a F x = x a F x
7 fof F : A onto B F : A B
8 3 7 syl φ F : A B
9 8 feqmptd φ F = x A F x
10 9 ad2antrr φ a 𝒫 A F a : a 1-1 onto B F = x A F x
11 10 reseq1d φ a 𝒫 A F a : a 1-1 onto B F a = x A F x a
12 elpwi a 𝒫 A a A
13 12 ad2antlr φ a 𝒫 A F a : a 1-1 onto B a A
14 13 resmptd φ a 𝒫 A F a : a 1-1 onto B x A F x a = x a F x
15 11 14 eqtrd φ a 𝒫 A F a : a 1-1 onto B F a = x a F x
16 f1oeq1 F a = x a F x F a : a 1-1 onto B x a F x : a 1-1 onto B
17 16 biimpa F a = x a F x F a : a 1-1 onto B x a F x : a 1-1 onto B
18 15 17 sylancom φ a 𝒫 A F a : a 1-1 onto B x a F x : a 1-1 onto B
19 simp1ll φ a 𝒫 A F a : a 1-1 onto B x a y = F x φ
20 13 3ad2ant1 φ a 𝒫 A F a : a 1-1 onto B x a y = F x a A
21 simp2 φ a 𝒫 A F a : a 1-1 onto B x a y = F x x a
22 20 21 sseldd φ a 𝒫 A F a : a 1-1 onto B x a y = F x x A
23 simp3 φ a 𝒫 A F a : a 1-1 onto B x a y = F x y = F x
24 19 22 23 1 syl3anc φ a 𝒫 A F a : a 1-1 onto B x a y = F x χ ψ
25 6 18 24 f1oresrab φ a 𝒫 A F a : a 1-1 onto B x a F x x a | ψ : x a | ψ 1-1 onto y B | χ
26 f1oeng x a | ψ V x a F x x a | ψ : x a | ψ 1-1 onto y B | χ x a | ψ y B | χ
27 5 25 26 sylancr φ a 𝒫 A F a : a 1-1 onto B x a | ψ y B | χ
28 27 ensymd φ a 𝒫 A F a : a 1-1 onto B y B | χ x a | ψ
29 rabexg A V x A | ψ V
30 2 29 syl φ x A | ψ V
31 30 ad2antrr φ a 𝒫 A F a : a 1-1 onto B x A | ψ V
32 rabss2 a A x a | ψ x A | ψ
33 13 32 syl φ a 𝒫 A F a : a 1-1 onto B x a | ψ x A | ψ
34 ssdomg x A | ψ V x a | ψ x A | ψ x a | ψ x A | ψ
35 31 33 34 sylc φ a 𝒫 A F a : a 1-1 onto B x a | ψ x A | ψ
36 endomtr y B | χ x a | ψ x a | ψ x A | ψ y B | χ x A | ψ
37 28 35 36 syl2anc φ a 𝒫 A F a : a 1-1 onto B y B | χ x A | ψ
38 foresf1o A V F : A onto B a 𝒫 A F a : a 1-1 onto B
39 2 3 38 syl2anc φ a 𝒫 A F a : a 1-1 onto B
40 37 39 r19.29a φ y B | χ x A | ψ