Metamath Proof Explorer


Theorem raddcn

Description: Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017)

Ref Expression
Hypothesis raddcn.1 J=topGenran.
Assertion raddcn x,yx+yJ×tJCnJ

Proof

Step Hyp Ref Expression
1 raddcn.1 J=topGenran.
2 eqid TopOpenfld=TopOpenfld
3 2 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
4 ax-resscn
5 xpss12 2×
6 4 4 5 mp2an 2×
7 2 cnfldtop TopOpenfldTop
8 2 cnfldtopon TopOpenfldTopOn
9 8 toponunii =TopOpenfld
10 7 7 9 9 txunii ×=TopOpenfld×tTopOpenfld
11 10 cnrest +TopOpenfld×tTopOpenfldCnTopOpenfld2×+2TopOpenfld×tTopOpenfld𝑡2CnTopOpenfld
12 3 6 11 mp2an +2TopOpenfld×tTopOpenfld𝑡2CnTopOpenfld
13 reex V
14 txrest TopOpenfldTopTopOpenfldTopVVTopOpenfld×tTopOpenfld𝑡2=TopOpenfld𝑡×tTopOpenfld𝑡
15 7 7 13 13 14 mp4an TopOpenfld×tTopOpenfld𝑡2=TopOpenfld𝑡×tTopOpenfld𝑡
16 2 tgioo2 topGenran.=TopOpenfld𝑡
17 1 16 eqtr2i TopOpenfld𝑡=J
18 17 17 oveq12i TopOpenfld𝑡×tTopOpenfld𝑡=J×tJ
19 15 18 eqtri TopOpenfld×tTopOpenfld𝑡2=J×tJ
20 19 oveq1i TopOpenfld×tTopOpenfld𝑡2CnTopOpenfld=J×tJCnTopOpenfld
21 12 20 eleqtri +2J×tJCnTopOpenfld
22 ax-addf +:×
23 ffn +:×+Fn×
24 22 23 ax-mp +Fn×
25 fnssres +Fn×2×+2Fn2
26 24 6 25 mp2an +2Fn2
27 fnov +2Fn2+2=x,yx+2y
28 26 27 mpbi +2=x,yx+2y
29 ovres xyx+2y=x+y
30 29 mpoeq3ia x,yx+2y=x,yx+y
31 28 30 eqtri +2=x,yx+y
32 31 rneqi ran+2=ranx,yx+y
33 readdcl xyx+y
34 33 rgen2 xyx+y
35 eqid x,yx+y=x,yx+y
36 35 rnmposs xyx+yranx,yx+y
37 34 36 ax-mp ranx,yx+y
38 32 37 eqsstri ran+2
39 cnrest2 TopOpenfldTopOnran+2+2J×tJCnTopOpenfld+2J×tJCnTopOpenfld𝑡
40 8 38 4 39 mp3an +2J×tJCnTopOpenfld+2J×tJCnTopOpenfld𝑡
41 21 40 mpbi +2J×tJCnTopOpenfld𝑡
42 17 oveq2i J×tJCnTopOpenfld𝑡=J×tJCnJ
43 41 31 42 3eltr3i x,yx+yJ×tJCnJ