Metamath Proof Explorer


Theorem rclexi

Description: The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020)

Ref Expression
Hypothesis rclexi.1 A V
Assertion rclexi x | A x I dom x ran x x V

Proof

Step Hyp Ref Expression
1 rclexi.1 A V
2 ssun1 A A I dom A ran A
3 dmun dom A I dom A ran A = dom A dom I dom A ran A
4 dmresi dom I dom A ran A = dom A ran A
5 4 uneq2i dom A dom I dom A ran A = dom A dom A ran A
6 ssun1 dom A dom A ran A
7 ssequn1 dom A dom A ran A dom A dom A ran A = dom A ran A
8 6 7 mpbi dom A dom A ran A = dom A ran A
9 3 5 8 3eqtri dom A I dom A ran A = dom A ran A
10 rnun ran A I dom A ran A = ran A ran I dom A ran A
11 rnresi ran I dom A ran A = dom A ran A
12 11 uneq2i ran A ran I dom A ran A = ran A dom A ran A
13 ssun2 ran A dom A ran A
14 ssequn1 ran A dom A ran A ran A dom A ran A = dom A ran A
15 13 14 mpbi ran A dom A ran A = dom A ran A
16 10 12 15 3eqtri ran A I dom A ran A = dom A ran A
17 9 16 uneq12i dom A I dom A ran A ran A I dom A ran A = dom A ran A dom A ran A
18 unidm dom A ran A dom A ran A = dom A ran A
19 17 18 eqtri dom A I dom A ran A ran A I dom A ran A = dom A ran A
20 19 reseq2i I dom A I dom A ran A ran A I dom A ran A = I dom A ran A
21 ssun2 I dom A ran A A I dom A ran A
22 20 21 eqsstri I dom A I dom A ran A ran A I dom A ran A A I dom A ran A
23 1 elexi A V
24 dmexg A V dom A V
25 rnexg A V ran A V
26 unexg dom A V ran A V dom A ran A V
27 24 25 26 syl2anc A V dom A ran A V
28 27 resiexd A V I dom A ran A V
29 1 28 ax-mp I dom A ran A V
30 23 29 unex A I dom A ran A V
31 dmeq x = A I dom A ran A dom x = dom A I dom A ran A
32 rneq x = A I dom A ran A ran x = ran A I dom A ran A
33 31 32 uneq12d x = A I dom A ran A dom x ran x = dom A I dom A ran A ran A I dom A ran A
34 33 reseq2d x = A I dom A ran A I dom x ran x = I dom A I dom A ran A ran A I dom A ran A
35 id x = A I dom A ran A x = A I dom A ran A
36 34 35 sseq12d x = A I dom A ran A I dom x ran x x I dom A I dom A ran A ran A I dom A ran A A I dom A ran A
37 36 cleq2lem x = A I dom A ran A A x I dom x ran x x A A I dom A ran A I dom A I dom A ran A ran A I dom A ran A A I dom A ran A
38 30 37 spcev A A I dom A ran A I dom A I dom A ran A ran A I dom A ran A A I dom A ran A x A x I dom x ran x x
39 intexab x A x I dom x ran x x x | A x I dom x ran x x V
40 38 39 sylib A A I dom A ran A I dom A I dom A ran A ran A I dom A ran A A I dom A ran A x | A x I dom x ran x x V
41 2 22 40 mp2an x | A x I dom x ran x x V