| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegcl |  | 
						
							| 2 |  | zbtwnre |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 |  | znegcl |  | 
						
							| 5 |  | znegcl |  | 
						
							| 6 |  | zcn |  | 
						
							| 7 |  | zcn |  | 
						
							| 8 |  | negcon2 |  | 
						
							| 9 | 6 7 8 | syl2an |  | 
						
							| 10 | 5 9 | reuhyp |  | 
						
							| 11 |  | breq2 |  | 
						
							| 12 |  | breq1 |  | 
						
							| 13 | 11 12 | anbi12d |  | 
						
							| 14 | 4 10 13 | reuxfr1 |  | 
						
							| 15 |  | zre |  | 
						
							| 16 |  | leneg |  | 
						
							| 17 | 16 | ancoms |  | 
						
							| 18 |  | peano2rem |  | 
						
							| 19 |  | ltneg |  | 
						
							| 20 | 18 19 | sylan |  | 
						
							| 21 |  | 1re |  | 
						
							| 22 |  | ltsubadd |  | 
						
							| 23 | 21 22 | mp3an2 |  | 
						
							| 24 |  | recn |  | 
						
							| 25 |  | ax-1cn |  | 
						
							| 26 |  | negsubdi |  | 
						
							| 27 | 24 25 26 | sylancl |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 28 | breq2d |  | 
						
							| 30 | 20 23 29 | 3bitr3d |  | 
						
							| 31 | 17 30 | anbi12d |  | 
						
							| 32 | 15 31 | sylan2 |  | 
						
							| 33 | 32 | bicomd |  | 
						
							| 34 | 33 | reubidva |  | 
						
							| 35 | 14 34 | bitrid |  | 
						
							| 36 | 3 35 | mpbid |  |