Metamath Proof Explorer


Theorem regr1lem2

Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion regr1lem2 JTopOnXJRegKQJHaus

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 simplll JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=JTopOnX
3 simpllr JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=JReg
4 simplrl JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=zX
5 simplrr JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=wX
6 simprl JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=aJ
7 simprr JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=¬mKQJnKQJFzmFwnmn=
8 1 2 3 4 5 6 7 regr1lem JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=zawa
9 3ancoma FzmFwnmn=FwnFzmmn=
10 incom mn=nm
11 10 eqeq1i mn=nm=
12 11 3anbi3i FwnFzmmn=FwnFzmnm=
13 9 12 bitri FzmFwnmn=FwnFzmnm=
14 13 2rexbii mKQJnKQJFzmFwnmn=mKQJnKQJFwnFzmnm=
15 rexcom mKQJnKQJFwnFzmnm=nKQJmKQJFwnFzmnm=
16 14 15 bitri mKQJnKQJFzmFwnmn=nKQJmKQJFwnFzmnm=
17 7 16 sylnib JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=¬nKQJmKQJFwnFzmnm=
18 1 2 3 5 4 6 17 regr1lem JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=waza
19 8 18 impbid JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=zawa
20 19 expr JTopOnXJRegzXwXaJ¬mKQJnKQJFzmFwnmn=zawa
21 20 ralrimdva JTopOnXJRegzXwX¬mKQJnKQJFzmFwnmn=aJzawa
22 1 kqfeq JTopOnXzXwXFz=FwyJzywy
23 elequ2 y=azyza
24 elequ2 y=awywa
25 23 24 bibi12d y=azywyzawa
26 25 cbvralvw yJzywyaJzawa
27 22 26 bitrdi JTopOnXzXwXFz=FwaJzawa
28 27 3expb JTopOnXzXwXFz=FwaJzawa
29 28 adantlr JTopOnXJRegzXwXFz=FwaJzawa
30 21 29 sylibrd JTopOnXJRegzXwX¬mKQJnKQJFzmFwnmn=Fz=Fw
31 30 necon1ad JTopOnXJRegzXwXFzFwmKQJnKQJFzmFwnmn=
32 31 ralrimivva JTopOnXJRegzXwXFzFwmKQJnKQJFzmFwnmn=
33 1 kqffn JTopOnXFFnX
34 33 adantr JTopOnXJRegFFnX
35 neeq1 a=FzabFzb
36 eleq1 a=FzamFzm
37 36 3anbi1d a=Fzambnmn=Fzmbnmn=
38 37 2rexbidv a=FzmKQJnKQJambnmn=mKQJnKQJFzmbnmn=
39 35 38 imbi12d a=FzabmKQJnKQJambnmn=FzbmKQJnKQJFzmbnmn=
40 39 ralbidv a=FzbranFabmKQJnKQJambnmn=branFFzbmKQJnKQJFzmbnmn=
41 40 ralrn FFnXaranFbranFabmKQJnKQJambnmn=zXbranFFzbmKQJnKQJFzmbnmn=
42 neeq2 b=FwFzbFzFw
43 eleq1 b=FwbnFwn
44 43 3anbi2d b=FwFzmbnmn=FzmFwnmn=
45 44 2rexbidv b=FwmKQJnKQJFzmbnmn=mKQJnKQJFzmFwnmn=
46 42 45 imbi12d b=FwFzbmKQJnKQJFzmbnmn=FzFwmKQJnKQJFzmFwnmn=
47 46 ralrn FFnXbranFFzbmKQJnKQJFzmbnmn=wXFzFwmKQJnKQJFzmFwnmn=
48 47 ralbidv FFnXzXbranFFzbmKQJnKQJFzmbnmn=zXwXFzFwmKQJnKQJFzmFwnmn=
49 41 48 bitrd FFnXaranFbranFabmKQJnKQJambnmn=zXwXFzFwmKQJnKQJFzmFwnmn=
50 34 49 syl JTopOnXJRegaranFbranFabmKQJnKQJambnmn=zXwXFzFwmKQJnKQJFzmFwnmn=
51 32 50 mpbird JTopOnXJRegaranFbranFabmKQJnKQJambnmn=
52 1 kqtopon JTopOnXKQJTopOnranF
53 52 adantr JTopOnXJRegKQJTopOnranF
54 ishaus2 KQJTopOnranFKQJHausaranFbranFabmKQJnKQJambnmn=
55 53 54 syl JTopOnXJRegKQJHausaranFbranFabmKQJnKQJambnmn=
56 51 55 mpbird JTopOnXJRegKQJHaus