Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | kqval.2 | |
|
Assertion | regr1lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | |
|
2 | simplll | |
|
3 | simpllr | |
|
4 | simplrl | |
|
5 | simplrr | |
|
6 | simprl | |
|
7 | simprr | |
|
8 | 1 2 3 4 5 6 7 | regr1lem | |
9 | 3ancoma | |
|
10 | incom | |
|
11 | 10 | eqeq1i | |
12 | 11 | 3anbi3i | |
13 | 9 12 | bitri | |
14 | 13 | 2rexbii | |
15 | rexcom | |
|
16 | 14 15 | bitri | |
17 | 7 16 | sylnib | |
18 | 1 2 3 5 4 6 17 | regr1lem | |
19 | 8 18 | impbid | |
20 | 19 | expr | |
21 | 20 | ralrimdva | |
22 | 1 | kqfeq | |
23 | elequ2 | |
|
24 | elequ2 | |
|
25 | 23 24 | bibi12d | |
26 | 25 | cbvralvw | |
27 | 22 26 | bitrdi | |
28 | 27 | 3expb | |
29 | 28 | adantlr | |
30 | 21 29 | sylibrd | |
31 | 30 | necon1ad | |
32 | 31 | ralrimivva | |
33 | 1 | kqffn | |
34 | 33 | adantr | |
35 | neeq1 | |
|
36 | eleq1 | |
|
37 | 36 | 3anbi1d | |
38 | 37 | 2rexbidv | |
39 | 35 38 | imbi12d | |
40 | 39 | ralbidv | |
41 | 40 | ralrn | |
42 | neeq2 | |
|
43 | eleq1 | |
|
44 | 43 | 3anbi2d | |
45 | 44 | 2rexbidv | |
46 | 42 45 | imbi12d | |
47 | 46 | ralrn | |
48 | 47 | ralbidv | |
49 | 41 48 | bitrd | |
50 | 34 49 | syl | |
51 | 32 50 | mpbird | |
52 | 1 | kqtopon | |
53 | 52 | adantr | |
54 | ishaus2 | |
|
55 | 53 54 | syl | |
56 | 51 55 | mpbird | |