Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | releldm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | 1 | anim2i | |
3 | id | |
|
4 | fvex | |
|
5 | 3 4 | eqeltrrdi | |
6 | 5 | rexlimivw | |
7 | 6 | anim2i | |
8 | eldm2g | |
|
9 | 8 | adantl | |
10 | df-rel | |
|
11 | ssel | |
|
12 | 10 11 | sylbi | |
13 | 12 | imp | |
14 | op1steq | |
|
15 | 13 14 | syl | |
16 | 15 | rexbidva | |
17 | 16 | adantr | |
18 | rexcom4 | |
|
19 | risset | |
|
20 | 19 | exbii | |
21 | 18 20 | bitr4i | |
22 | 17 21 | bitrdi | |
23 | 9 22 | bitr4d | |
24 | 2 7 23 | pm5.21nd | |