Metamath Proof Explorer


Theorem releldm2

Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013)

Ref Expression
Assertion releldm2 RelABdomAxA1stx=B

Proof

Step Hyp Ref Expression
1 elex BdomABV
2 1 anim2i RelABdomARelABV
3 id 1stx=B1stx=B
4 fvex 1stxV
5 3 4 eqeltrrdi 1stx=BBV
6 5 rexlimivw xA1stx=BBV
7 6 anim2i RelAxA1stx=BRelABV
8 eldm2g BVBdomAyByA
9 8 adantl RelABVBdomAyByA
10 df-rel RelAAV×V
11 ssel AV×VxAxV×V
12 10 11 sylbi RelAxAxV×V
13 12 imp RelAxAxV×V
14 op1steq xV×V1stx=Byx=By
15 13 14 syl RelAxA1stx=Byx=By
16 15 rexbidva RelAxA1stx=BxAyx=By
17 16 adantr RelABVxA1stx=BxAyx=By
18 rexcom4 xAyx=ByyxAx=By
19 risset ByAxAx=By
20 19 exbii yByAyxAx=By
21 18 20 bitr4i xAyx=ByyByA
22 17 21 bitrdi RelABVxA1stx=ByByA
23 9 22 bitr4d RelABVBdomAxA1stx=B
24 2 7 23 pm5.21nd RelABdomAxA1stx=B