Metamath Proof Explorer


Theorem releldm2

Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013)

Ref Expression
Assertion releldm2 Rel A B dom A x A 1 st x = B

Proof

Step Hyp Ref Expression
1 elex B dom A B V
2 1 anim2i Rel A B dom A Rel A B V
3 id 1 st x = B 1 st x = B
4 fvex 1 st x V
5 3 4 eqeltrrdi 1 st x = B B V
6 5 rexlimivw x A 1 st x = B B V
7 6 anim2i Rel A x A 1 st x = B Rel A B V
8 eldm2g B V B dom A y B y A
9 8 adantl Rel A B V B dom A y B y A
10 df-rel Rel A A V × V
11 ssel A V × V x A x V × V
12 10 11 sylbi Rel A x A x V × V
13 12 imp Rel A x A x V × V
14 op1steq x V × V 1 st x = B y x = B y
15 13 14 syl Rel A x A 1 st x = B y x = B y
16 15 rexbidva Rel A x A 1 st x = B x A y x = B y
17 16 adantr Rel A B V x A 1 st x = B x A y x = B y
18 rexcom4 x A y x = B y y x A x = B y
19 risset B y A x A x = B y
20 19 exbii y B y A y x A x = B y
21 18 20 bitr4i x A y x = B y y B y A
22 17 21 bitrdi Rel A B V x A 1 st x = B y B y A
23 9 22 bitr4d Rel A B V B dom A x A 1 st x = B
24 2 7 23 pm5.21nd Rel A B dom A x A 1 st x = B