Metamath Proof Explorer


Theorem relexpss1d

Description: The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020)

Ref Expression
Hypotheses relexpss1d.a φAB
relexpss1d.b φBV
relexpss1d.n φN0
Assertion relexpss1d φArNBrN

Proof

Step Hyp Ref Expression
1 relexpss1d.a φAB
2 relexpss1d.b φBV
3 relexpss1d.n φN0
4 elnn0 N0NN=0
5 3 4 sylib φNN=0
6 oveq2 x=1Arx=Ar1
7 oveq2 x=1Brx=Br1
8 6 7 sseq12d x=1ArxBrxAr1Br1
9 8 imbi2d x=1φArxBrxφAr1Br1
10 oveq2 x=yArx=Ary
11 oveq2 x=yBrx=Bry
12 10 11 sseq12d x=yArxBrxAryBry
13 12 imbi2d x=yφArxBrxφAryBry
14 oveq2 x=y+1Arx=Ary+1
15 oveq2 x=y+1Brx=Bry+1
16 14 15 sseq12d x=y+1ArxBrxAry+1Bry+1
17 16 imbi2d x=y+1φArxBrxφAry+1Bry+1
18 oveq2 x=NArx=ArN
19 oveq2 x=NBrx=BrN
20 18 19 sseq12d x=NArxBrxArNBrN
21 20 imbi2d x=NφArxBrxφArNBrN
22 2 1 ssexd φAV
23 22 relexp1d φAr1=A
24 2 relexp1d φBr1=B
25 1 23 24 3sstr4d φAr1Br1
26 simp3 yφAryBryAryBry
27 1 3ad2ant2 yφAryBryAB
28 26 27 coss12d yφAryBryAryABryB
29 22 3ad2ant2 yφAryBryAV
30 simp1 yφAryBryy
31 relexpsucnnr AVyAry+1=AryA
32 29 30 31 syl2anc yφAryBryAry+1=AryA
33 2 3ad2ant2 yφAryBryBV
34 relexpsucnnr BVyBry+1=BryB
35 33 30 34 syl2anc yφAryBryBry+1=BryB
36 28 32 35 3sstr4d yφAryBryAry+1Bry+1
37 36 3exp yφAryBryAry+1Bry+1
38 37 a2d yφAryBryφAry+1Bry+1
39 9 13 17 21 25 38 nnind NφArNBrN
40 simpr N=0φφ
41 dmss ABdomAdomB
42 rnss ABranAranB
43 41 42 jca ABdomAdomBranAranB
44 unss12 domAdomBranAranBdomAranAdomBranB
45 1 43 44 3syl φdomAranAdomBranB
46 ssres2 domAranAdomBranBIdomAranAIdomBranB
47 40 45 46 3syl N=0φIdomAranAIdomBranB
48 simpl N=0φN=0
49 48 oveq2d N=0φArN=Ar0
50 relexp0g AVAr0=IdomAranA
51 40 22 50 3syl N=0φAr0=IdomAranA
52 49 51 eqtrd N=0φArN=IdomAranA
53 48 oveq2d N=0φBrN=Br0
54 relexp0g BVBr0=IdomBranB
55 40 2 54 3syl N=0φBr0=IdomBranB
56 53 55 eqtrd N=0φBrN=IdomBranB
57 47 52 56 3sstr4d N=0φArNBrN
58 57 ex N=0φArNBrN
59 39 58 jaoi NN=0φArNBrN
60 5 59 mpcom φArNBrN