Step |
Hyp |
Ref |
Expression |
1 |
|
relexpss1d.a |
|
2 |
|
relexpss1d.b |
|
3 |
|
relexpss1d.n |
|
4 |
|
elnn0 |
|
5 |
3 4
|
sylib |
|
6 |
|
oveq2 |
|
7 |
|
oveq2 |
|
8 |
6 7
|
sseq12d |
|
9 |
8
|
imbi2d |
|
10 |
|
oveq2 |
|
11 |
|
oveq2 |
|
12 |
10 11
|
sseq12d |
|
13 |
12
|
imbi2d |
|
14 |
|
oveq2 |
|
15 |
|
oveq2 |
|
16 |
14 15
|
sseq12d |
|
17 |
16
|
imbi2d |
|
18 |
|
oveq2 |
|
19 |
|
oveq2 |
|
20 |
18 19
|
sseq12d |
|
21 |
20
|
imbi2d |
|
22 |
2 1
|
ssexd |
|
23 |
22
|
relexp1d |
|
24 |
2
|
relexp1d |
|
25 |
1 23 24
|
3sstr4d |
|
26 |
|
simp3 |
|
27 |
1
|
3ad2ant2 |
|
28 |
26 27
|
coss12d |
|
29 |
22
|
3ad2ant2 |
|
30 |
|
simp1 |
|
31 |
|
relexpsucnnr |
|
32 |
29 30 31
|
syl2anc |
|
33 |
2
|
3ad2ant2 |
|
34 |
|
relexpsucnnr |
|
35 |
33 30 34
|
syl2anc |
|
36 |
28 32 35
|
3sstr4d |
|
37 |
36
|
3exp |
|
38 |
37
|
a2d |
|
39 |
9 13 17 21 25 38
|
nnind |
|
40 |
|
simpr |
|
41 |
|
dmss |
|
42 |
|
rnss |
|
43 |
41 42
|
jca |
|
44 |
|
unss12 |
|
45 |
1 43 44
|
3syl |
|
46 |
|
ssres2 |
|
47 |
40 45 46
|
3syl |
|
48 |
|
simpl |
|
49 |
48
|
oveq2d |
|
50 |
|
relexp0g |
|
51 |
40 22 50
|
3syl |
|
52 |
49 51
|
eqtrd |
|
53 |
48
|
oveq2d |
|
54 |
|
relexp0g |
|
55 |
40 2 54
|
3syl |
|
56 |
53 55
|
eqtrd |
|
57 |
47 52 56
|
3sstr4d |
|
58 |
57
|
ex |
|
59 |
39 58
|
jaoi |
|
60 |
5 59
|
mpcom |
|