| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
|
| 2 |
|
nnmulscl |
|
| 3 |
2
|
ad2antlr |
|
| 4 |
|
absmuls |
|
| 5 |
4
|
ad2antrr |
|
| 6 |
|
absscl |
|
| 7 |
6
|
ad3antrrr |
|
| 8 |
|
simplrl |
|
| 9 |
8
|
nnsnod |
|
| 10 |
|
absscl |
|
| 11 |
10
|
ad3antlr |
|
| 12 |
|
simplrr |
|
| 13 |
12
|
nnsnod |
|
| 14 |
|
abssge0 |
|
| 15 |
14
|
ad3antrrr |
|
| 16 |
|
simprl |
|
| 17 |
|
abssge0 |
|
| 18 |
17
|
ad3antlr |
|
| 19 |
|
simprr |
|
| 20 |
7 9 11 13 15 16 18 19
|
sltmul12ad |
|
| 21 |
5 20
|
eqbrtrd |
|
| 22 |
1 3 21
|
rspcedvdw |
|
| 23 |
22
|
ex |
|
| 24 |
|
nnsno |
|
| 25 |
|
absslt |
|
| 26 |
24 25
|
sylan2 |
|
| 27 |
|
nnsno |
|
| 28 |
|
absslt |
|
| 29 |
27 28
|
sylan2 |
|
| 30 |
26 29
|
bi2anan9 |
|
| 31 |
30
|
an4s |
|
| 32 |
|
mulscl |
|
| 33 |
32
|
adantr |
|
| 34 |
|
nnsno |
|
| 35 |
|
absslt |
|
| 36 |
33 34 35
|
syl2an |
|
| 37 |
36
|
rexbidva |
|
| 38 |
23 31 37
|
3imtr3d |
|
| 39 |
38
|
impr |
|