Metamath Proof Explorer


Theorem rescncf

Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion rescncf CAF:AcnBFC:CcnB

Proof

Step Hyp Ref Expression
1 simpr CAF:AcnBF:AcnB
2 cncfrss F:AcnBA
3 2 adantl CAF:AcnBA
4 cncfrss2 F:AcnBB
5 4 adantl CAF:AcnBB
6 elcncf ABF:AcnBF:ABxAy+z+wAxw<zFxFw<y
7 3 5 6 syl2anc CAF:AcnBF:AcnBF:ABxAy+z+wAxw<zFxFw<y
8 1 7 mpbid CAF:AcnBF:ABxAy+z+wAxw<zFxFw<y
9 8 simpld CAF:AcnBF:AB
10 simpl CAF:AcnBCA
11 9 10 fssresd CAF:AcnBFC:CB
12 8 simprd CAF:AcnBxAy+z+wAxw<zFxFw<y
13 ssralv CAxAy+z+wAxw<zFxFw<yxCy+z+wAxw<zFxFw<y
14 ssralv CAwAxw<zFxFw<ywCxw<zFxFw<y
15 fvres xCFCx=Fx
16 fvres wCFCw=Fw
17 15 16 oveqan12d xCwCFCxFCw=FxFw
18 17 fveq2d xCwCFCxFCw=FxFw
19 18 breq1d xCwCFCxFCw<yFxFw<y
20 19 imbi2d xCwCxw<zFCxFCw<yxw<zFxFw<y
21 20 biimprd xCwCxw<zFxFw<yxw<zFCxFCw<y
22 21 ralimdva xCwCxw<zFxFw<ywCxw<zFCxFCw<y
23 14 22 sylan9 CAxCwAxw<zFxFw<ywCxw<zFCxFCw<y
24 23 reximdv CAxCz+wAxw<zFxFw<yz+wCxw<zFCxFCw<y
25 24 ralimdv CAxCy+z+wAxw<zFxFw<yy+z+wCxw<zFCxFCw<y
26 25 ralimdva CAxCy+z+wAxw<zFxFw<yxCy+z+wCxw<zFCxFCw<y
27 13 26 syld CAxAy+z+wAxw<zFxFw<yxCy+z+wCxw<zFCxFCw<y
28 10 12 27 sylc CAF:AcnBxCy+z+wCxw<zFCxFCw<y
29 10 3 sstrd CAF:AcnBC
30 elcncf CBFC:CcnBFC:CBxCy+z+wCxw<zFCxFCw<y
31 29 5 30 syl2anc CAF:AcnBFC:CcnBFC:CBxCy+z+wCxw<zFCxFCw<y
32 11 28 31 mpbir2and CAF:AcnBFC:CcnB
33 32 ex CAF:AcnBFC:CcnB