Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 25-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rescncf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | cncfrss | |
|
3 | 2 | adantl | |
4 | cncfrss2 | |
|
5 | 4 | adantl | |
6 | elcncf | |
|
7 | 3 5 6 | syl2anc | |
8 | 1 7 | mpbid | |
9 | 8 | simpld | |
10 | simpl | |
|
11 | 9 10 | fssresd | |
12 | 8 | simprd | |
13 | ssralv | |
|
14 | ssralv | |
|
15 | fvres | |
|
16 | fvres | |
|
17 | 15 16 | oveqan12d | |
18 | 17 | fveq2d | |
19 | 18 | breq1d | |
20 | 19 | imbi2d | |
21 | 20 | biimprd | |
22 | 21 | ralimdva | |
23 | 14 22 | sylan9 | |
24 | 23 | reximdv | |
25 | 24 | ralimdv | |
26 | 25 | ralimdva | |
27 | 13 26 | syld | |
28 | 10 12 27 | sylc | |
29 | 10 3 | sstrd | |
30 | elcncf | |
|
31 | 29 5 30 | syl2anc | |
32 | 11 28 31 | mpbir2and | |
33 | 32 | ex | |