Metamath Proof Explorer


Theorem resfnfinfin

Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018)

Ref Expression
Assertion resfnfinfin FFnABFinFBFin

Proof

Step Hyp Ref Expression
1 fnrel FFnARelF
2 1 adantr FFnABFinRelF
3 resindm RelFFBdomF=FB
4 3 eqcomd RelFFB=FBdomF
5 2 4 syl FFnABFinFB=FBdomF
6 fnfun FFnAFunF
7 6 funfnd FFnAFFndomF
8 fnresin2 FFndomFFBdomFFnBdomF
9 infi BFinBdomFFin
10 fnfi FBdomFFnBdomFBdomFFinFBdomFFin
11 9 10 sylan2 FBdomFFnBdomFBFinFBdomFFin
12 11 ex FBdomFFnBdomFBFinFBdomFFin
13 7 8 12 3syl FFnABFinFBdomFFin
14 13 imp FFnABFinFBdomFFin
15 5 14 eqeltrd FFnABFinFBFin