Metamath Proof Explorer


Theorem ressms

Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ressms KMetSpAVK𝑠AMetSp

Proof

Step Hyp Ref Expression
1 msxms KMetSpK∞MetSp
2 ressxms K∞MetSpAVK𝑠A∞MetSp
3 1 2 sylan KMetSpAVK𝑠A∞MetSp
4 eqid BaseK=BaseK
5 eqid distKBaseK×BaseK=distKBaseK×BaseK
6 4 5 msmet KMetSpdistKBaseK×BaseKMetBaseK
7 6 adantr KMetSpAVdistKBaseK×BaseKMetBaseK
8 metres distKBaseK×BaseKMetBaseKdistKBaseK×BaseKA×AMetBaseKA
9 7 8 syl KMetSpAVdistKBaseK×BaseKA×AMetBaseKA
10 resres distKBaseK×BaseKA×A=distKBaseK×BaseKA×A
11 inxp BaseK×BaseKA×A=BaseKA×BaseKA
12 11 reseq2i distKBaseK×BaseKA×A=distKBaseKA×BaseKA
13 10 12 eqtri distKBaseK×BaseKA×A=distKBaseKA×BaseKA
14 eqid K𝑠A=K𝑠A
15 eqid distK=distK
16 14 15 ressds AVdistK=distK𝑠A
17 16 adantl KMetSpAVdistK=distK𝑠A
18 incom BaseKA=ABaseK
19 14 4 ressbas AVABaseK=BaseK𝑠A
20 19 adantl KMetSpAVABaseK=BaseK𝑠A
21 18 20 eqtrid KMetSpAVBaseKA=BaseK𝑠A
22 21 sqxpeqd KMetSpAVBaseKA×BaseKA=BaseK𝑠A×BaseK𝑠A
23 17 22 reseq12d KMetSpAVdistKBaseKA×BaseKA=distK𝑠ABaseK𝑠A×BaseK𝑠A
24 13 23 eqtrid KMetSpAVdistKBaseK×BaseKA×A=distK𝑠ABaseK𝑠A×BaseK𝑠A
25 21 fveq2d KMetSpAVMetBaseKA=MetBaseK𝑠A
26 9 24 25 3eltr3d KMetSpAVdistK𝑠ABaseK𝑠A×BaseK𝑠AMetBaseK𝑠A
27 eqid TopOpenK=TopOpenK
28 14 27 resstopn TopOpenK𝑡A=TopOpenK𝑠A
29 eqid BaseK𝑠A=BaseK𝑠A
30 eqid distK𝑠ABaseK𝑠A×BaseK𝑠A=distK𝑠ABaseK𝑠A×BaseK𝑠A
31 28 29 30 isms K𝑠AMetSpK𝑠A∞MetSpdistK𝑠ABaseK𝑠A×BaseK𝑠AMetBaseK𝑠A
32 3 26 31 sylanbrc KMetSpAVK𝑠AMetSp