Metamath Proof Explorer


Theorem ressval3dOLD

Description: Obsolete version of ressval3d as of 17-Oct-2024. Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020) (Revised by AV, 3-Jul-2022) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ressval3d.r R=S𝑠A
ressval3d.b B=BaseS
ressval3d.e E=Basendx
ressval3d.s φSV
ressval3d.f φFunS
ressval3d.d φEdomS
ressval3d.u φAB
Assertion ressval3dOLD φR=SsSetEA

Proof

Step Hyp Ref Expression
1 ressval3d.r R=S𝑠A
2 ressval3d.b B=BaseS
3 ressval3d.e E=Basendx
4 ressval3d.s φSV
5 ressval3d.f φFunS
6 ressval3d.d φEdomS
7 ressval3d.u φAB
8 sspss ABABA=B
9 dfpss3 ABAB¬BA
10 9 orbi1i ABA=BAB¬BAA=B
11 8 10 bitri ABAB¬BAA=B
12 simplr AB¬BAφ¬BA
13 4 adantl AB¬BAφSV
14 simpl AB¬BAAB
15 2 fvexi BV
16 15 a1i φBV
17 ssexg ABBVAV
18 14 16 17 syl2an AB¬BAφAV
19 1 2 ressval2 ¬BASVAVR=SsSetBasendxAB
20 12 13 18 19 syl3anc AB¬BAφR=SsSetBasendxAB
21 3 a1i AB¬BAφE=Basendx
22 df-ss ABAB=A
23 22 biimpi ABAB=A
24 23 eqcomd ABA=AB
25 24 adantr AB¬BAA=AB
26 25 adantr AB¬BAφA=AB
27 21 26 opeq12d AB¬BAφEA=BasendxAB
28 27 eqcomd AB¬BAφBasendxAB=EA
29 28 oveq2d AB¬BAφSsSetBasendxAB=SsSetEA
30 20 29 eqtrd AB¬BAφR=SsSetEA
31 30 ex AB¬BAφR=SsSetEA
32 1 a1i A=BφR=S𝑠A
33 oveq2 A=BS𝑠A=S𝑠B
34 33 adantr A=BφS𝑠A=S𝑠B
35 4 adantl A=BφSV
36 2 ressid SVS𝑠B=S
37 35 36 syl A=BφS𝑠B=S
38 32 34 37 3eqtrd A=BφR=S
39 df-base Base=Slot1
40 1nn 1
41 3 6 eqeltrrid φBasendxdomS
42 39 40 4 5 41 setsidvaldOLD φS=SsSetBasendxBaseS
43 42 adantl A=BφS=SsSetBasendxBaseS
44 3 a1i A=BφE=Basendx
45 simpl A=BφA=B
46 45 2 eqtrdi A=BφA=BaseS
47 44 46 opeq12d A=BφEA=BasendxBaseS
48 47 eqcomd A=BφBasendxBaseS=EA
49 48 oveq2d A=BφSsSetBasendxBaseS=SsSetEA
50 38 43 49 3eqtrd A=BφR=SsSetEA
51 50 ex A=BφR=SsSetEA
52 31 51 jaoi AB¬BAA=BφR=SsSetEA
53 11 52 sylbi ABφR=SsSetEA
54 7 53 mpcom φR=SsSetEA