Metamath Proof Explorer


Theorem restcnrm

Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion restcnrm J CNrm A V J 𝑡 A CNrm

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 restin J CNrm A V J 𝑡 A = J 𝑡 A J
3 simpll J CNrm A V x 𝒫 A J J CNrm
4 elpwi x 𝒫 A J x A J
5 4 adantl J CNrm A V x 𝒫 A J x A J
6 inex1g A V A J V
7 6 ad2antlr J CNrm A V x 𝒫 A J A J V
8 restabs J CNrm x A J A J V J 𝑡 A J 𝑡 x = J 𝑡 x
9 3 5 7 8 syl3anc J CNrm A V x 𝒫 A J J 𝑡 A J 𝑡 x = J 𝑡 x
10 cnrmi J CNrm x 𝒫 A J J 𝑡 x Nrm
11 10 adantlr J CNrm A V x 𝒫 A J J 𝑡 x Nrm
12 9 11 eqeltrd J CNrm A V x 𝒫 A J J 𝑡 A J 𝑡 x Nrm
13 12 ralrimiva J CNrm A V x 𝒫 A J J 𝑡 A J 𝑡 x Nrm
14 cnrmtop J CNrm J Top
15 14 adantr J CNrm A V J Top
16 toptopon2 J Top J TopOn J
17 15 16 sylib J CNrm A V J TopOn J
18 inss2 A J J
19 resttopon J TopOn J A J J J 𝑡 A J TopOn A J
20 17 18 19 sylancl J CNrm A V J 𝑡 A J TopOn A J
21 iscnrm2 J 𝑡 A J TopOn A J J 𝑡 A J CNrm x 𝒫 A J J 𝑡 A J 𝑡 x Nrm
22 20 21 syl J CNrm A V J 𝑡 A J CNrm x 𝒫 A J J 𝑡 A J 𝑡 x Nrm
23 13 22 mpbird J CNrm A V J 𝑡 A J CNrm
24 2 23 eqeltrd J CNrm A V J 𝑡 A CNrm