Metamath Proof Explorer


Theorem restcnrm

Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion restcnrm JCNrmAVJ𝑡ACNrm

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 restin JCNrmAVJ𝑡A=J𝑡AJ
3 simpll JCNrmAVx𝒫AJJCNrm
4 elpwi x𝒫AJxAJ
5 4 adantl JCNrmAVx𝒫AJxAJ
6 inex1g AVAJV
7 6 ad2antlr JCNrmAVx𝒫AJAJV
8 restabs JCNrmxAJAJVJ𝑡AJ𝑡x=J𝑡x
9 3 5 7 8 syl3anc JCNrmAVx𝒫AJJ𝑡AJ𝑡x=J𝑡x
10 cnrmi JCNrmx𝒫AJJ𝑡xNrm
11 10 adantlr JCNrmAVx𝒫AJJ𝑡xNrm
12 9 11 eqeltrd JCNrmAVx𝒫AJJ𝑡AJ𝑡xNrm
13 12 ralrimiva JCNrmAVx𝒫AJJ𝑡AJ𝑡xNrm
14 cnrmtop JCNrmJTop
15 14 adantr JCNrmAVJTop
16 toptopon2 JTopJTopOnJ
17 15 16 sylib JCNrmAVJTopOnJ
18 inss2 AJJ
19 resttopon JTopOnJAJJJ𝑡AJTopOnAJ
20 17 18 19 sylancl JCNrmAVJ𝑡AJTopOnAJ
21 iscnrm2 J𝑡AJTopOnAJJ𝑡AJCNrmx𝒫AJJ𝑡AJ𝑡xNrm
22 20 21 syl JCNrmAVJ𝑡AJCNrmx𝒫AJJ𝑡AJ𝑡xNrm
23 13 22 mpbird JCNrmAVJ𝑡AJCNrm
24 2 23 eqeltrd JCNrmAVJ𝑡ACNrm