Metamath Proof Explorer


Theorem restopnb

Description: If B is an open subset of the subspace base set A , then any subset of B is open iff it is open in A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion restopnb JTopAVBJBACBCJCJ𝑡A

Proof

Step Hyp Ref Expression
1 simpr3 JTopAVBJBACBCB
2 simpr2 JTopAVBJBACBBA
3 1 2 sstrd JTopAVBJBACBCA
4 df-ss CACA=C
5 3 4 sylib JTopAVBJBACBCA=C
6 5 eqcomd JTopAVBJBACBC=CA
7 ineq1 v=CvA=CA
8 7 rspceeqv CJC=CAvJC=vA
9 8 expcom C=CACJvJC=vA
10 6 9 syl JTopAVBJBACBCJvJC=vA
11 inass vAB=vAB
12 simprr JTopAVBJBACBvJC=vAC=vA
13 12 ineq1d JTopAVBJBACBvJC=vACB=vAB
14 simplr3 JTopAVBJBACBvJCB
15 df-ss CBCB=C
16 14 15 sylib JTopAVBJBACBvJCB=C
17 16 adantrr JTopAVBJBACBvJC=vACB=C
18 13 17 eqtr3d JTopAVBJBACBvJC=vAvAB=C
19 simplr2 JTopAVBJBACBvJBA
20 sseqin2 BAAB=B
21 19 20 sylib JTopAVBJBACBvJAB=B
22 21 ineq2d JTopAVBJBACBvJvAB=vB
23 22 adantrr JTopAVBJBACBvJC=vAvAB=vB
24 11 18 23 3eqtr3a JTopAVBJBACBvJC=vAC=vB
25 simplll JTopAVBJBACBvJC=vAJTop
26 simprl JTopAVBJBACBvJC=vAvJ
27 simplr1 JTopAVBJBACBvJC=vABJ
28 inopn JTopvJBJvBJ
29 25 26 27 28 syl3anc JTopAVBJBACBvJC=vAvBJ
30 24 29 eqeltrd JTopAVBJBACBvJC=vACJ
31 30 rexlimdvaa JTopAVBJBACBvJC=vACJ
32 10 31 impbid JTopAVBJBACBCJvJC=vA
33 elrest JTopAVCJ𝑡AvJC=vA
34 33 adantr JTopAVBJBACBCJ𝑡AvJC=vA
35 32 34 bitr4d JTopAVBJBACBCJCJ𝑡A