Metamath Proof Explorer


Theorem restopnb

Description: If B is an open subset of the subspace base set A , then any subset of B is open iff it is open in A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion restopnb J Top A V B J B A C B C J C J 𝑡 A

Proof

Step Hyp Ref Expression
1 simpr3 J Top A V B J B A C B C B
2 simpr2 J Top A V B J B A C B B A
3 1 2 sstrd J Top A V B J B A C B C A
4 df-ss C A C A = C
5 3 4 sylib J Top A V B J B A C B C A = C
6 5 eqcomd J Top A V B J B A C B C = C A
7 ineq1 v = C v A = C A
8 7 rspceeqv C J C = C A v J C = v A
9 8 expcom C = C A C J v J C = v A
10 6 9 syl J Top A V B J B A C B C J v J C = v A
11 inass v A B = v A B
12 simprr J Top A V B J B A C B v J C = v A C = v A
13 12 ineq1d J Top A V B J B A C B v J C = v A C B = v A B
14 simplr3 J Top A V B J B A C B v J C B
15 df-ss C B C B = C
16 14 15 sylib J Top A V B J B A C B v J C B = C
17 16 adantrr J Top A V B J B A C B v J C = v A C B = C
18 13 17 eqtr3d J Top A V B J B A C B v J C = v A v A B = C
19 simplr2 J Top A V B J B A C B v J B A
20 sseqin2 B A A B = B
21 19 20 sylib J Top A V B J B A C B v J A B = B
22 21 ineq2d J Top A V B J B A C B v J v A B = v B
23 22 adantrr J Top A V B J B A C B v J C = v A v A B = v B
24 11 18 23 3eqtr3a J Top A V B J B A C B v J C = v A C = v B
25 simplll J Top A V B J B A C B v J C = v A J Top
26 simprl J Top A V B J B A C B v J C = v A v J
27 simplr1 J Top A V B J B A C B v J C = v A B J
28 inopn J Top v J B J v B J
29 25 26 27 28 syl3anc J Top A V B J B A C B v J C = v A v B J
30 24 29 eqeltrd J Top A V B J B A C B v J C = v A C J
31 30 rexlimdvaa J Top A V B J B A C B v J C = v A C J
32 10 31 impbid J Top A V B J B A C B C J v J C = v A
33 elrest J Top A V C J 𝑡 A v J C = v A
34 33 adantr J Top A V B J B A C B C J 𝑡 A v J C = v A
35 32 34 bitr4d J Top A V B J B A C B C J C J 𝑡 A