Description: If B is an open subset of the subspace base set A , then any subset of B is open iff it is open in A . (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | restopnb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 | |
|
2 | simpr2 | |
|
3 | 1 2 | sstrd | |
4 | df-ss | |
|
5 | 3 4 | sylib | |
6 | 5 | eqcomd | |
7 | ineq1 | |
|
8 | 7 | rspceeqv | |
9 | 8 | expcom | |
10 | 6 9 | syl | |
11 | inass | |
|
12 | simprr | |
|
13 | 12 | ineq1d | |
14 | simplr3 | |
|
15 | df-ss | |
|
16 | 14 15 | sylib | |
17 | 16 | adantrr | |
18 | 13 17 | eqtr3d | |
19 | simplr2 | |
|
20 | sseqin2 | |
|
21 | 19 20 | sylib | |
22 | 21 | ineq2d | |
23 | 22 | adantrr | |
24 | 11 18 23 | 3eqtr3a | |
25 | simplll | |
|
26 | simprl | |
|
27 | simplr1 | |
|
28 | inopn | |
|
29 | 25 26 27 28 | syl3anc | |
30 | 24 29 | eqeltrd | |
31 | 30 | rexlimdvaa | |
32 | 10 31 | impbid | |
33 | elrest | |
|
34 | 33 | adantr | |
35 | 32 34 | bitr4d | |