Metamath Proof Explorer


Theorem reusv2lem4

Description: Lemma for reusv2 . (Contributed by NM, 13-Dec-2012)

Ref Expression
Assertion reusv2lem4 ∃!xAyBφx=C∃!xyBCAφx=C

Proof

Step Hyp Ref Expression
1 df-reu ∃!xAyBφx=C∃!xxAyBφx=C
2 anass yBCAφx=CyBCAφx=C
3 rabid yyB|CAφyBCAφ
4 3 anbi1i yyB|CAφx=CyBCAφx=C
5 anass xAφx=CxAφx=C
6 eleq1 x=CxACA
7 6 anbi1d x=CxAφCAφ
8 7 pm5.32ri xAφx=CCAφx=C
9 5 8 bitr3i xAφx=CCAφx=C
10 9 anbi2i yBxAφx=CyBCAφx=C
11 2 4 10 3bitr4ri yBxAφx=CyyB|CAφx=C
12 11 rexbii2 yBxAφx=CyyB|CAφx=C
13 r19.42v yBxAφx=CxAyBφx=C
14 nfrab1 _yyB|CAφ
15 nfcv _zyB|CAφ
16 nfv zx=C
17 nfcsb1v _yz/yC
18 17 nfeq2 yx=z/yC
19 csbeq1a y=zC=z/yC
20 19 eqeq2d y=zx=Cx=z/yC
21 14 15 16 18 20 cbvrexfw yyB|CAφx=CzyB|CAφx=z/yC
22 12 13 21 3bitr3i xAyBφx=CzyB|CAφx=z/yC
23 22 eubii ∃!xxAyBφx=C∃!xzyB|CAφx=z/yC
24 elex CACV
25 24 ad2antrl yBCAφCV
26 3 25 sylbi yyB|CAφCV
27 26 rgen yyB|CAφCV
28 nfv zCV
29 17 nfel1 yz/yCV
30 19 eleq1d y=zCVz/yCV
31 14 15 28 29 30 cbvralfw yyB|CAφCVzyB|CAφz/yCV
32 27 31 mpbi zyB|CAφz/yCV
33 reusv2lem3 zyB|CAφz/yCV∃!xzyB|CAφx=z/yC∃!xzyB|CAφx=z/yC
34 32 33 ax-mp ∃!xzyB|CAφx=z/yC∃!xzyB|CAφx=z/yC
35 df-ral zyB|CAφx=z/yCzzyB|CAφx=z/yC
36 nfv zyyB|CAφx=C
37 14 nfcri yzyB|CAφ
38 37 18 nfim yzyB|CAφx=z/yC
39 eleq1 y=zyyB|CAφzyB|CAφ
40 39 20 imbi12d y=zyyB|CAφx=CzyB|CAφx=z/yC
41 36 38 40 cbvalv1 yyyB|CAφx=CzzyB|CAφx=z/yC
42 3 imbi1i yyB|CAφx=CyBCAφx=C
43 impexp yBCAφx=CyBCAφx=C
44 42 43 bitri yyB|CAφx=CyBCAφx=C
45 44 albii yyyB|CAφx=CyyBCAφx=C
46 df-ral yBCAφx=CyyBCAφx=C
47 45 46 bitr4i yyyB|CAφx=CyBCAφx=C
48 35 41 47 3bitr2i zyB|CAφx=z/yCyBCAφx=C
49 48 eubii ∃!xzyB|CAφx=z/yC∃!xyBCAφx=C
50 34 49 bitri ∃!xzyB|CAφx=z/yC∃!xyBCAφx=C
51 1 23 50 3bitri ∃!xAyBφx=C∃!xyBCAφx=C