Description: The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rexmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renepnf | |
|
2 | 1 | adantr | |
3 | 2 | necon2bi | |
4 | 3 | adantl | |
5 | renemnf | |
|
6 | 5 | adantr | |
7 | 6 | necon2bi | |
8 | 7 | adantl | |
9 | 4 8 | jaoi | |
10 | renepnf | |
|
11 | 10 | adantl | |
12 | 11 | necon2bi | |
13 | 12 | adantl | |
14 | renemnf | |
|
15 | 14 | adantl | |
16 | 15 | necon2bi | |
17 | 16 | adantl | |
18 | 13 17 | jaoi | |
19 | 9 18 | jaoi | |
20 | 19 | con2i | |
21 | 20 | iffalsed | |
22 | 7 | adantl | |
23 | 3 | adantl | |
24 | 22 23 | jaoi | |
25 | 16 | adantl | |
26 | 12 | adantl | |
27 | 25 26 | jaoi | |
28 | 24 27 | jaoi | |
29 | 28 | con2i | |
30 | 29 | iffalsed | |
31 | 21 30 | eqtrd | |
32 | 31 | ifeq2d | |
33 | rexr | |
|
34 | rexr | |
|
35 | xmulval | |
|
36 | 33 34 35 | syl2an | |
37 | ifid | |
|
38 | oveq1 | |
|
39 | mul02lem2 | |
|
40 | 39 | adantl | |
41 | 38 40 | sylan9eqr | |
42 | oveq2 | |
|
43 | recn | |
|
44 | 43 | mul01d | |
45 | 44 | adantr | |
46 | 42 45 | sylan9eqr | |
47 | 41 46 | jaodan | |
48 | 47 | ifeq1da | |
49 | 37 48 | eqtr3id | |
50 | 32 36 49 | 3eqtr4d | |