Metamath Proof Explorer


Theorem rfcnpre1

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre1.1 _xB
rfcnpre1.2 _xF
rfcnpre1.3 xφ
rfcnpre1.4 K=topGenran.
rfcnpre1.5 X=J
rfcnpre1.6 A=xX|B<Fx
rfcnpre1.7 φB*
rfcnpre1.8 φFJCnK
Assertion rfcnpre1 φAJ

Proof

Step Hyp Ref Expression
1 rfcnpre1.1 _xB
2 rfcnpre1.2 _xF
3 rfcnpre1.3 xφ
4 rfcnpre1.4 K=topGenran.
5 rfcnpre1.5 X=J
6 rfcnpre1.6 A=xX|B<Fx
7 rfcnpre1.7 φB*
8 rfcnpre1.8 φFJCnK
9 2 nfcnv _xF-1
10 nfcv _x.
11 nfcv _x+∞
12 1 10 11 nfov _xB+∞
13 9 12 nfima _xF-1B+∞
14 nfrab1 _xxX|B<Fx
15 cntop1 FJCnKJTop
16 8 15 syl φJTop
17 istopon JTopOnXJTopX=J
18 16 5 17 sylanblrc φJTopOnX
19 retopon topGenran.TopOn
20 4 19 eqeltri KTopOn
21 iscn JTopOnXKTopOnFJCnKF:XyKF-1yJ
22 18 20 21 sylancl φFJCnKF:XyKF-1yJ
23 8 22 mpbid φF:XyKF-1yJ
24 23 simpld φF:X
25 24 ffvelcdmda φxXFx
26 elioopnf B*FxB+∞FxB<Fx
27 7 26 syl φFxB+∞FxB<Fx
28 27 baibd φFxFxB+∞B<Fx
29 25 28 syldan φxXFxB+∞B<Fx
30 29 pm5.32da φxXFxB+∞xXB<Fx
31 ffn F:XFFnX
32 elpreima FFnXxF-1B+∞xXFxB+∞
33 24 31 32 3syl φxF-1B+∞xXFxB+∞
34 rabid xxX|B<FxxXB<Fx
35 34 a1i φxxX|B<FxxXB<Fx
36 30 33 35 3bitr4d φxF-1B+∞xxX|B<Fx
37 3 13 14 36 eqrd φF-1B+∞=xX|B<Fx
38 37 6 eqtr4di φF-1B+∞=A
39 iooretop B+∞topGenran.
40 39 4 eleqtrri B+∞K
41 cnima FJCnKB+∞KF-1B+∞J
42 8 40 41 sylancl φF-1B+∞J
43 38 42 eqeltrrd φAJ