Description: Lemma 3 for rhmsubc . (Contributed by AV, 2-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcrescrhm.u | |
|
rngcrescrhm.c | |
||
rngcrescrhm.r | |
||
rngcrescrhm.h | |
||
Assertion | rhmsubclem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhm.u | |
|
2 | rngcrescrhm.c | |
|
3 | rngcrescrhm.r | |
|
4 | rngcrescrhm.h | |
|
5 | 3 | eleq2d | |
6 | elinel1 | |
|
7 | 5 6 | syl6bi | |
8 | 7 | imp | |
9 | eqid | |
|
10 | 9 | idrhm | |
11 | 8 10 | syl | |
12 | eqid | |
|
13 | 2 | eqcomi | |
14 | 13 | fveq2i | |
15 | 1 | adantr | |
16 | incom | |
|
17 | ringssrng | |
|
18 | sslin | |
|
19 | 17 18 | mp1i | |
20 | 16 19 | eqsstrid | |
21 | 2 12 1 | rngcbas | |
22 | 20 3 21 | 3sstr4d | |
23 | 22 | sselda | |
24 | 2 12 14 15 23 9 | rngcid | |
25 | 1 2 3 4 | rhmsubclem2 | |
26 | 25 | 3anidm23 | |
27 | 11 24 26 | 3eltr4d | |