Metamath Proof Explorer


Theorem rhmsubclem3

Description: Lemma 3 for rhmsubc . (Contributed by AV, 2-Mar-2020)

Ref Expression
Hypotheses rngcrescrhm.u φUV
rngcrescrhm.c C=RngCatU
rngcrescrhm.r φR=RingU
rngcrescrhm.h H=RingHomR×R
Assertion rhmsubclem3 φxRIdRngCatUxxHx

Proof

Step Hyp Ref Expression
1 rngcrescrhm.u φUV
2 rngcrescrhm.c C=RngCatU
3 rngcrescrhm.r φR=RingU
4 rngcrescrhm.h H=RingHomR×R
5 3 eleq2d φxRxRingU
6 elinel1 xRingUxRing
7 5 6 syl6bi φxRxRing
8 7 imp φxRxRing
9 eqid Basex=Basex
10 9 idrhm xRingIBasexxRingHomx
11 8 10 syl φxRIBasexxRingHomx
12 eqid BaseC=BaseC
13 2 eqcomi RngCatU=C
14 13 fveq2i IdRngCatU=IdC
15 1 adantr φxRUV
16 incom RingU=URing
17 ringssrng RingRng
18 sslin RingRngURingURng
19 17 18 mp1i φURingURng
20 16 19 eqsstrid φRingUURng
21 2 12 1 rngcbas φBaseC=URng
22 20 3 21 3sstr4d φRBaseC
23 22 sselda φxRxBaseC
24 2 12 14 15 23 9 rngcid φxRIdRngCatUx=IBasex
25 1 2 3 4 rhmsubclem2 φxRxRxHx=xRingHomx
26 25 3anidm23 φxRxHx=xRingHomx
27 11 24 26 3eltr4d φxRIdRngCatUxxHx