Metamath Proof Explorer


Theorem rhmunitinv

Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Assertion rhmunitinv FRRingHomSAUnitRFinvrRA=invrSFA

Proof

Step Hyp Ref Expression
1 rhmrcl1 FRRingHomSRRing
2 eqid UnitR=UnitR
3 eqid invrR=invrR
4 eqid R=R
5 eqid 1R=1R
6 2 3 4 5 unitlinv RRingAUnitRinvrRARA=1R
7 1 6 sylan FRRingHomSAUnitRinvrRARA=1R
8 7 fveq2d FRRingHomSAUnitRFinvrRARA=F1R
9 simpl FRRingHomSAUnitRFRRingHomS
10 eqid BaseR=BaseR
11 10 2 unitss UnitRBaseR
12 2 3 unitinvcl RRingAUnitRinvrRAUnitR
13 1 12 sylan FRRingHomSAUnitRinvrRAUnitR
14 11 13 sselid FRRingHomSAUnitRinvrRABaseR
15 simpr FRRingHomSAUnitRAUnitR
16 11 15 sselid FRRingHomSAUnitRABaseR
17 eqid S=S
18 10 4 17 rhmmul FRRingHomSinvrRABaseRABaseRFinvrRARA=FinvrRASFA
19 9 14 16 18 syl3anc FRRingHomSAUnitRFinvrRARA=FinvrRASFA
20 eqid 1S=1S
21 5 20 rhm1 FRRingHomSF1R=1S
22 21 adantr FRRingHomSAUnitRF1R=1S
23 8 19 22 3eqtr3d FRRingHomSAUnitRFinvrRASFA=1S
24 rhmrcl2 FRRingHomSSRing
25 24 adantr FRRingHomSAUnitRSRing
26 elrhmunit FRRingHomSAUnitRFAUnitS
27 eqid UnitS=UnitS
28 eqid invrS=invrS
29 27 28 17 20 unitlinv SRingFAUnitSinvrSFASFA=1S
30 25 26 29 syl2anc FRRingHomSAUnitRinvrSFASFA=1S
31 23 30 eqtr4d FRRingHomSAUnitRFinvrRASFA=invrSFASFA
32 eqid mulGrpS𝑠UnitS=mulGrpS𝑠UnitS
33 27 32 unitgrp SRingmulGrpS𝑠UnitSGrp
34 24 33 syl FRRingHomSmulGrpS𝑠UnitSGrp
35 34 adantr FRRingHomSAUnitRmulGrpS𝑠UnitSGrp
36 elrhmunit FRRingHomSinvrRAUnitRFinvrRAUnitS
37 13 36 syldan FRRingHomSAUnitRFinvrRAUnitS
38 27 28 unitinvcl SRingFAUnitSinvrSFAUnitS
39 25 26 38 syl2anc FRRingHomSAUnitRinvrSFAUnitS
40 27 32 unitgrpbas UnitS=BasemulGrpS𝑠UnitS
41 fvex UnitSV
42 eqid mulGrpS=mulGrpS
43 42 17 mgpplusg S=+mulGrpS
44 32 43 ressplusg UnitSVS=+mulGrpS𝑠UnitS
45 41 44 ax-mp S=+mulGrpS𝑠UnitS
46 40 45 grprcan mulGrpS𝑠UnitSGrpFinvrRAUnitSinvrSFAUnitSFAUnitSFinvrRASFA=invrSFASFAFinvrRA=invrSFA
47 35 37 39 26 46 syl13anc FRRingHomSAUnitRFinvrRASFA=invrSFASFAFinvrRA=invrSFA
48 31 47 mpbid FRRingHomSAUnitRFinvrRA=invrSFA