Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | rhmunitinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl1 | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 2 3 4 5 | unitlinv | |
7 | 1 6 | sylan | |
8 | 7 | fveq2d | |
9 | simpl | |
|
10 | eqid | |
|
11 | 10 2 | unitss | |
12 | 2 3 | unitinvcl | |
13 | 1 12 | sylan | |
14 | 11 13 | sselid | |
15 | simpr | |
|
16 | 11 15 | sselid | |
17 | eqid | |
|
18 | 10 4 17 | rhmmul | |
19 | 9 14 16 18 | syl3anc | |
20 | eqid | |
|
21 | 5 20 | rhm1 | |
22 | 21 | adantr | |
23 | 8 19 22 | 3eqtr3d | |
24 | rhmrcl2 | |
|
25 | 24 | adantr | |
26 | elrhmunit | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 27 28 17 20 | unitlinv | |
30 | 25 26 29 | syl2anc | |
31 | 23 30 | eqtr4d | |
32 | eqid | |
|
33 | 27 32 | unitgrp | |
34 | 24 33 | syl | |
35 | 34 | adantr | |
36 | elrhmunit | |
|
37 | 13 36 | syldan | |
38 | 27 28 | unitinvcl | |
39 | 25 26 38 | syl2anc | |
40 | 27 32 | unitgrpbas | |
41 | fvex | |
|
42 | eqid | |
|
43 | 42 17 | mgpplusg | |
44 | 32 43 | ressplusg | |
45 | 41 44 | ax-mp | |
46 | 40 45 | grprcan | |
47 | 35 37 39 26 46 | syl13anc | |
48 | 31 47 | mpbid | |