Database
BASIC ALGEBRAIC STRUCTURES
Rings
Unital rings
ring1
Next ⟩
ringn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
ring1
Description:
The (smallest) structure representing a
zero ring
.
(Contributed by
AV
, 28-Apr-2019)
Ref
Expression
Hypothesis
ring1.m
⊢
M
=
Base
ndx
Z
+
ndx
Z
Z
Z
⋅
ndx
Z
Z
Z
Assertion
ring1
⊢
Z
∈
V
→
M
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
ring1.m
⊢
M
=
Base
ndx
Z
+
ndx
Z
Z
Z
⋅
ndx
Z
Z
Z
2
eqid
⊢
Base
ndx
Z
+
ndx
Z
Z
Z
=
Base
ndx
Z
+
ndx
Z
Z
Z
3
2
grp1
⊢
Z
∈
V
→
Base
ndx
Z
+
ndx
Z
Z
Z
∈
Grp
4
snex
⊢
Z
∈
V
5
1
rngbase
⊢
Z
∈
V
→
Z
=
Base
M
6
4
5
ax-mp
⊢
Z
=
Base
M
7
6
eqcomi
⊢
Base
M
=
Z
8
snex
⊢
Z
Z
Z
∈
V
9
1
rngplusg
⊢
Z
Z
Z
∈
V
→
Z
Z
Z
=
+
M
10
9
eqcomd
⊢
Z
Z
Z
∈
V
→
+
M
=
Z
Z
Z
11
8
10
ax-mp
⊢
+
M
=
Z
Z
Z
12
7
11
2
grppropstr
⊢
M
∈
Grp
↔
Base
ndx
Z
+
ndx
Z
Z
Z
∈
Grp
13
3
12
sylibr
⊢
Z
∈
V
→
M
∈
Grp
14
2
mnd1
⊢
Z
∈
V
→
Base
ndx
Z
+
ndx
Z
Z
Z
∈
Mnd
15
eqid
⊢
mulGrp
M
=
mulGrp
M
16
15
6
mgpbas
⊢
Z
=
Base
mulGrp
M
17
2
grpbase
⊢
Z
∈
V
→
Z
=
Base
Base
ndx
Z
+
ndx
Z
Z
Z
18
4
17
ax-mp
⊢
Z
=
Base
Base
ndx
Z
+
ndx
Z
Z
Z
19
16
18
eqtr3i
⊢
Base
mulGrp
M
=
Base
Base
ndx
Z
+
ndx
Z
Z
Z
20
1
rngmulr
⊢
Z
Z
Z
∈
V
→
Z
Z
Z
=
⋅
M
21
8
20
ax-mp
⊢
Z
Z
Z
=
⋅
M
22
2
grpplusg
⊢
Z
Z
Z
∈
V
→
Z
Z
Z
=
+
Base
ndx
Z
+
ndx
Z
Z
Z
23
8
22
ax-mp
⊢
Z
Z
Z
=
+
Base
ndx
Z
+
ndx
Z
Z
Z
24
eqid
⊢
⋅
M
=
⋅
M
25
15
24
mgpplusg
⊢
⋅
M
=
+
mulGrp
M
26
21
23
25
3eqtr3ri
⊢
+
mulGrp
M
=
+
Base
ndx
Z
+
ndx
Z
Z
Z
27
19
26
mndprop
⊢
mulGrp
M
∈
Mnd
↔
Base
ndx
Z
+
ndx
Z
Z
Z
∈
Mnd
28
14
27
sylibr
⊢
Z
∈
V
→
mulGrp
M
∈
Mnd
29
df-ov
⊢
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
30
opex
⊢
Z
Z
∈
V
31
fvsng
⊢
Z
Z
∈
V
∧
Z
∈
V
→
Z
Z
Z
Z
Z
=
Z
32
30
31
mpan
⊢
Z
∈
V
→
Z
Z
Z
Z
Z
=
Z
33
29
32
eqtrid
⊢
Z
∈
V
→
Z
Z
Z
Z
Z
=
Z
34
33
oveq2d
⊢
Z
∈
V
→
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
35
33
33
oveq12d
⊢
Z
∈
V
→
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
36
34
35
eqtr4d
⊢
Z
∈
V
→
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
37
33
oveq1d
⊢
Z
∈
V
→
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
38
37
35
eqtr4d
⊢
Z
∈
V
→
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
39
oveq1
⊢
a
=
Z
→
a
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
c
40
oveq1
⊢
a
=
Z
→
a
Z
Z
Z
b
=
Z
Z
Z
Z
b
41
oveq1
⊢
a
=
Z
→
a
Z
Z
Z
c
=
Z
Z
Z
Z
c
42
40
41
oveq12d
⊢
a
=
Z
→
a
Z
Z
Z
b
Z
Z
Z
a
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
43
39
42
eqeq12d
⊢
a
=
Z
→
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
b
Z
Z
Z
a
Z
Z
Z
c
↔
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
44
40
oveq1d
⊢
a
=
Z
→
a
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
c
45
41
oveq1d
⊢
a
=
Z
→
a
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
46
44
45
eqeq12d
⊢
a
=
Z
→
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
47
43
46
anbi12d
⊢
a
=
Z
→
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
b
Z
Z
Z
a
Z
Z
Z
c
∧
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
48
47
2ralbidv
⊢
a
=
Z
→
∀
b
∈
Z
∀
c
∈
Z
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
b
Z
Z
Z
a
Z
Z
Z
c
∧
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
∀
b
∈
Z
∀
c
∈
Z
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
49
48
ralsng
⊢
Z
∈
V
→
∀
a
∈
Z
∀
b
∈
Z
∀
c
∈
Z
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
b
Z
Z
Z
a
Z
Z
Z
c
∧
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
∀
b
∈
Z
∀
c
∈
Z
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
50
oveq1
⊢
b
=
Z
→
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
51
50
oveq2d
⊢
b
=
Z
→
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
c
52
oveq2
⊢
b
=
Z
→
Z
Z
Z
Z
b
=
Z
Z
Z
Z
Z
53
52
oveq1d
⊢
b
=
Z
→
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
54
51
53
eqeq12d
⊢
b
=
Z
→
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
↔
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
55
52
oveq1d
⊢
b
=
Z
→
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
c
56
50
oveq2d
⊢
b
=
Z
→
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
57
55
56
eqeq12d
⊢
b
=
Z
→
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
58
54
57
anbi12d
⊢
b
=
Z
→
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
59
58
ralbidv
⊢
b
=
Z
→
∀
c
∈
Z
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
∀
c
∈
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
60
59
ralsng
⊢
Z
∈
V
→
∀
b
∈
Z
∀
c
∈
Z
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
b
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
b
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
∀
c
∈
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
61
oveq2
⊢
c
=
Z
→
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
62
61
oveq2d
⊢
c
=
Z
→
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
63
61
oveq2d
⊢
c
=
Z
→
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
64
62
63
eqeq12d
⊢
c
=
Z
→
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
↔
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
65
oveq2
⊢
c
=
Z
→
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
66
61
61
oveq12d
⊢
c
=
Z
→
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
67
65
66
eqeq12d
⊢
c
=
Z
→
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
↔
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
68
64
67
anbi12d
⊢
c
=
Z
→
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
↔
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
∧
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
69
68
ralsng
⊢
Z
∈
V
→
∀
c
∈
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
c
∧
Z
Z
Z
Z
Z
Z
Z
Z
c
=
Z
Z
Z
Z
c
Z
Z
Z
Z
Z
Z
Z
c
↔
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
∧
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
70
49
60
69
3bitrd
⊢
Z
∈
V
→
∀
a
∈
Z
∀
b
∈
Z
∀
c
∈
Z
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
b
Z
Z
Z
a
Z
Z
Z
c
∧
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
↔
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
∧
Z
Z
Z
Z
Z
Z
Z
Z
Z
=
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
71
36
38
70
mpbir2and
⊢
Z
∈
V
→
∀
a
∈
Z
∀
b
∈
Z
∀
c
∈
Z
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
b
Z
Z
Z
a
Z
Z
Z
c
∧
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
72
8
9
ax-mp
⊢
Z
Z
Z
=
+
M
73
6
15
72
21
isring
⊢
M
∈
Ring
↔
M
∈
Grp
∧
mulGrp
M
∈
Mnd
∧
∀
a
∈
Z
∀
b
∈
Z
∀
c
∈
Z
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
b
Z
Z
Z
a
Z
Z
Z
c
∧
a
Z
Z
Z
b
Z
Z
Z
c
=
a
Z
Z
Z
c
Z
Z
Z
b
Z
Z
Z
c
74
13
28
71
73
syl3anbrc
⊢
Z
∈
V
→
M
∈
Ring