Metamath Proof Explorer


Theorem ringcid

Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020) (Revised by AV, 10-Mar-2020)

Ref Expression
Hypotheses ringccat.c C = RingCat U
ringcid.b B = Base C
ringcid.o 1 ˙ = Id C
ringcid.u φ U V
ringcid.x φ X B
ringcid.s S = Base X
Assertion ringcid φ 1 ˙ X = I S

Proof

Step Hyp Ref Expression
1 ringccat.c C = RingCat U
2 ringcid.b B = Base C
3 ringcid.o 1 ˙ = Id C
4 ringcid.u φ U V
5 ringcid.x φ X B
6 ringcid.s S = Base X
7 eqidd φ U Ring = U Ring
8 eqidd φ RingHom U Ring × U Ring = RingHom U Ring × U Ring
9 1 4 7 8 ringcval φ C = ExtStrCat U cat RingHom U Ring × U Ring
10 9 fveq2d φ Id C = Id ExtStrCat U cat RingHom U Ring × U Ring
11 3 10 syl5eq φ 1 ˙ = Id ExtStrCat U cat RingHom U Ring × U Ring
12 11 fveq1d φ 1 ˙ X = Id ExtStrCat U cat RingHom U Ring × U Ring X
13 eqid ExtStrCat U cat RingHom U Ring × U Ring = ExtStrCat U cat RingHom U Ring × U Ring
14 eqid ExtStrCat U = ExtStrCat U
15 incom U Ring = Ring U
16 15 a1i φ U Ring = Ring U
17 14 4 16 8 rhmsubcsetc φ RingHom U Ring × U Ring Subcat ExtStrCat U
18 7 8 rhmresfn φ RingHom U Ring × U Ring Fn U Ring × U Ring
19 eqid Id ExtStrCat U = Id ExtStrCat U
20 1 2 4 ringcbas φ B = U Ring
21 20 eleq2d φ X B X U Ring
22 5 21 mpbid φ X U Ring
23 13 17 18 19 22 subcid φ Id ExtStrCat U X = Id ExtStrCat U cat RingHom U Ring × U Ring X
24 elinel1 X U Ring X U
25 21 24 syl6bi φ X B X U
26 5 25 mpd φ X U
27 14 19 4 26 estrcid φ Id ExtStrCat U X = I Base X
28 6 eqcomi Base X = S
29 28 a1i φ Base X = S
30 29 reseq2d φ I Base X = I S
31 27 30 eqtrd φ Id ExtStrCat U X = I S
32 12 23 31 3eqtr2d φ 1 ˙ X = I S