Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020) (Revised by AV, 10-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringccat.c | |
|
ringcid.b | |
||
ringcid.o | |
||
ringcid.u | |
||
ringcid.x | |
||
ringcid.s | |
||
Assertion | ringcid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringccat.c | |
|
2 | ringcid.b | |
|
3 | ringcid.o | |
|
4 | ringcid.u | |
|
5 | ringcid.x | |
|
6 | ringcid.s | |
|
7 | eqidd | |
|
8 | eqidd | |
|
9 | 1 4 7 8 | ringcval | |
10 | 9 | fveq2d | |
11 | 3 10 | eqtrid | |
12 | 11 | fveq1d | |
13 | eqid | |
|
14 | eqid | |
|
15 | incom | |
|
16 | 15 | a1i | |
17 | 14 4 16 8 | rhmsubcsetc | |
18 | 7 8 | rhmresfn | |
19 | eqid | |
|
20 | 1 2 4 | ringcbas | |
21 | 20 | eleq2d | |
22 | 5 21 | mpbid | |
23 | 13 17 18 19 22 | subcid | |
24 | elinel1 | |
|
25 | 21 24 | syl6bi | |
26 | 5 25 | mpd | |
27 | 14 19 4 26 | estrcid | |
28 | 6 | eqcomi | |
29 | 28 | a1i | |
30 | 29 | reseq2d | |
31 | 27 30 | eqtrd | |
32 | 12 23 31 | 3eqtr2d | |