Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010) (Revised by Jeff Madsen, 18-Apr-2010) (Revised by AV, 24-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringinvnzdiv.b | |
|
ringinvnzdiv.t | |
||
ringinvnzdiv.u | |
||
ringinvnzdiv.z | |
||
ringinvnzdiv.r | |
||
ringinvnzdiv.x | |
||
ringinvnzdiv.a | |
||
ringinvnzdiv.y | |
||
Assertion | ringinvnzdiv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringinvnzdiv.b | |
|
2 | ringinvnzdiv.t | |
|
3 | ringinvnzdiv.u | |
|
4 | ringinvnzdiv.z | |
|
5 | ringinvnzdiv.r | |
|
6 | ringinvnzdiv.x | |
|
7 | ringinvnzdiv.a | |
|
8 | ringinvnzdiv.y | |
|
9 | 1 2 3 | ringlidm | |
10 | 5 8 9 | syl2anc | |
11 | 10 | eqcomd | |
12 | 11 | ad3antrrr | |
13 | oveq1 | |
|
14 | 13 | eqcoms | |
15 | 14 | adantl | |
16 | 5 | adantr | |
17 | simpr | |
|
18 | 6 | adantr | |
19 | 8 | adantr | |
20 | 17 18 19 | 3jca | |
21 | 16 20 | jca | |
22 | 21 | adantr | |
23 | 1 2 | ringass | |
24 | 22 23 | syl | |
25 | 15 24 | eqtrd | |
26 | 25 | adantr | |
27 | oveq2 | |
|
28 | 1 2 4 | ringrz | |
29 | 5 28 | sylan | |
30 | 29 | adantr | |
31 | 27 30 | sylan9eqr | |
32 | 12 26 31 | 3eqtrd | |
33 | 32 | exp31 | |
34 | 33 | rexlimdva | |
35 | 7 34 | mpd | |
36 | oveq2 | |
|
37 | 1 2 4 | ringrz | |
38 | 5 6 37 | syl2anc | |
39 | 36 38 | sylan9eqr | |
40 | 39 | ex | |
41 | 35 40 | impbid | |