Description: Negation in a ring is the same as right multiplication by -1. ( rngonegmn1r analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringnegl.b | |
|
ringnegl.t | |
||
ringnegl.u | |
||
ringnegl.n | |
||
ringnegl.r | |
||
ringnegl.x | |
||
Assertion | ringnegr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.b | |
|
2 | ringnegl.t | |
|
3 | ringnegl.u | |
|
4 | ringnegl.n | |
|
5 | ringnegl.r | |
|
6 | ringnegl.x | |
|
7 | ringgrp | |
|
8 | 5 7 | syl | |
9 | 1 3 | ringidcl | |
10 | 5 9 | syl | |
11 | 1 4 | grpinvcl | |
12 | 8 10 11 | syl2anc | |
13 | eqid | |
|
14 | 1 13 2 | ringdi | |
15 | 5 6 12 10 14 | syl13anc | |
16 | eqid | |
|
17 | 1 13 16 4 | grplinv | |
18 | 8 10 17 | syl2anc | |
19 | 18 | oveq2d | |
20 | 1 2 16 | ringrz | |
21 | 5 6 20 | syl2anc | |
22 | 19 21 | eqtrd | |
23 | 1 2 3 | ringridm | |
24 | 5 6 23 | syl2anc | |
25 | 24 | oveq2d | |
26 | 15 22 25 | 3eqtr3rd | |
27 | 1 2 | ringcl | |
28 | 5 6 12 27 | syl3anc | |
29 | 1 13 16 4 | grpinvid2 | |
30 | 8 6 28 29 | syl3anc | |
31 | 26 30 | mpbird | |
32 | 31 | eqcomd | |