Description: If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | riotaeqimp.i | |
|
riotaeqimp.j | |
||
riotaeqimp.x | |
||
riotaeqimp.y | |
||
Assertion | riotaeqimp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqimp.i | |
|
2 | riotaeqimp.j | |
|
3 | riotaeqimp.x | |
|
4 | riotaeqimp.y | |
|
5 | 2 | eqcomi | |
6 | 5 | eqeq2i | |
7 | 6 | a1i | |
8 | 7 | bicomd | |
9 | 8 | biimpa | |
10 | 1 | eqeq1i | |
11 | riotacl | |
|
12 | 4 11 | syl | |
13 | 2 12 | eqeltrid | |
14 | nfv | |
|
15 | nfcvd | |
|
16 | nfcvd | |
|
17 | 15 | nfcsb1d | |
18 | 16 17 | nfeqd | |
19 | id | |
|
20 | csbeq1a | |
|
21 | 20 | eqeq2d | |
22 | 21 | adantl | |
23 | 14 15 18 19 22 | riota2df | |
24 | 23 | bicomd | |
25 | 13 3 24 | syl2anc | |
26 | 10 25 | bitrid | |
27 | 26 | biimpa | |
28 | riotacl | |
|
29 | 3 28 | syl | |
30 | 1 29 | eqeltrid | |
31 | nfv | |
|
32 | nfcvd | |
|
33 | nfcvd | |
|
34 | 32 | nfcsb1d | |
35 | 33 34 | nfeqd | |
36 | id | |
|
37 | csbeq1a | |
|
38 | 37 | eqeq2d | |
39 | 38 | adantl | |
40 | 31 32 35 36 39 | riota2df | |
41 | 30 4 40 | syl2anc | |
42 | eqcom | |
|
43 | 41 42 | bitrdi | |
44 | 43 | adantr | |
45 | csbeq1 | |
|
46 | 45 | eqcoms | |
47 | eqeq12 | |
|
48 | 47 | ancoms | |
49 | 46 48 | syl5ibrcom | |
50 | 49 | expd | |
51 | 50 | adantl | |
52 | 44 51 | sylbird | |
53 | 9 27 52 | mp2d | |