Metamath Proof Explorer


Theorem riotaeqimp

Description: If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020)

Ref Expression
Hypotheses riotaeqimp.i I=ιaV|X=A
riotaeqimp.j J=ιaV|Y=A
riotaeqimp.x φ∃!aVX=A
riotaeqimp.y φ∃!aVY=A
Assertion riotaeqimp φI=JX=Y

Proof

Step Hyp Ref Expression
1 riotaeqimp.i I=ιaV|X=A
2 riotaeqimp.j J=ιaV|Y=A
3 riotaeqimp.x φ∃!aVX=A
4 riotaeqimp.y φ∃!aVY=A
5 2 eqcomi ιaV|Y=A=J
6 5 eqeq2i I=ιaV|Y=AI=J
7 6 a1i φI=ιaV|Y=AI=J
8 7 bicomd φI=JI=ιaV|Y=A
9 8 biimpa φI=JI=ιaV|Y=A
10 1 eqeq1i I=JιaV|X=A=J
11 riotacl ∃!aVY=AιaV|Y=AV
12 4 11 syl φιaV|Y=AV
13 2 12 eqeltrid φJV
14 nfv aJV
15 nfcvd JV_aJ
16 nfcvd JV_aX
17 15 nfcsb1d JV_aJ/aA
18 16 17 nfeqd JVaX=J/aA
19 id JVJV
20 csbeq1a a=JA=J/aA
21 20 eqeq2d a=JX=AX=J/aA
22 21 adantl JVa=JX=AX=J/aA
23 14 15 18 19 22 riota2df JV∃!aVX=AX=J/aAιaV|X=A=J
24 23 bicomd JV∃!aVX=AιaV|X=A=JX=J/aA
25 13 3 24 syl2anc φιaV|X=A=JX=J/aA
26 10 25 bitrid φI=JX=J/aA
27 26 biimpa φI=JX=J/aA
28 riotacl ∃!aVX=AιaV|X=AV
29 3 28 syl φιaV|X=AV
30 1 29 eqeltrid φIV
31 nfv aIV
32 nfcvd IV_aI
33 nfcvd IV_aY
34 32 nfcsb1d IV_aI/aA
35 33 34 nfeqd IVaY=I/aA
36 id IVIV
37 csbeq1a a=IA=I/aA
38 37 eqeq2d a=IY=AY=I/aA
39 38 adantl IVa=IY=AY=I/aA
40 31 32 35 36 39 riota2df IV∃!aVY=AY=I/aAιaV|Y=A=I
41 30 4 40 syl2anc φY=I/aAιaV|Y=A=I
42 eqcom ιaV|Y=A=II=ιaV|Y=A
43 41 42 bitrdi φY=I/aAI=ιaV|Y=A
44 43 adantr φI=JY=I/aAI=ιaV|Y=A
45 csbeq1 J=IJ/aA=I/aA
46 45 eqcoms I=JJ/aA=I/aA
47 eqeq12 X=J/aAY=I/aAX=YJ/aA=I/aA
48 47 ancoms Y=I/aAX=J/aAX=YJ/aA=I/aA
49 46 48 syl5ibrcom I=JY=I/aAX=J/aAX=Y
50 49 expd I=JY=I/aAX=J/aAX=Y
51 50 adantl φI=JY=I/aAX=J/aAX=Y
52 44 51 sylbird φI=JI=ιaV|Y=AX=J/aAX=Y
53 9 27 52 mp2d φI=JX=Y