Metamath Proof Explorer


Theorem rlim2lt

Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Hypotheses rlim2.1 φzAB
rlim2.2 φA
rlim2.3 φC
Assertion rlim2lt φzABCx+yzAy<zBC<x

Proof

Step Hyp Ref Expression
1 rlim2.1 φzAB
2 rlim2.2 φA
3 rlim2.3 φC
4 1 2 3 rlim2 φzABCx+yzAyzBC<x
5 simplr AyzAy
6 simpl AyA
7 6 sselda AyzAz
8 ltle yzy<zyz
9 5 7 8 syl2anc AyzAy<zyz
10 9 imim1d AyzAyzBC<xy<zBC<x
11 10 ralimdva AyzAyzBC<xzAy<zBC<x
12 2 11 sylan φyzAyzBC<xzAy<zBC<x
13 12 reximdva φyzAyzBC<xyzAy<zBC<x
14 13 ralimdv φx+yzAyzBC<xx+yzAy<zBC<x
15 4 14 sylbid φzABCx+yzAy<zBC<x
16 peano2re yy+1
17 16 adantl φyy+1
18 ltp1 yy<y+1
19 18 ad2antlr AyzAy<y+1
20 16 ad2antlr AyzAy+1
21 ltletr yy+1zy<y+1y+1zy<z
22 5 20 7 21 syl3anc AyzAy<y+1y+1zy<z
23 19 22 mpand AyzAy+1zy<z
24 23 imim1d AyzAy<zBC<xy+1zBC<x
25 24 ralimdva AyzAy<zBC<xzAy+1zBC<x
26 2 25 sylan φyzAy<zBC<xzAy+1zBC<x
27 breq1 w=y+1wzy+1z
28 27 rspceaimv y+1zAy+1zBC<xwzAwzBC<x
29 17 26 28 syl6an φyzAy<zBC<xwzAwzBC<x
30 29 rexlimdva φyzAy<zBC<xwzAwzBC<x
31 30 ralimdv φx+yzAy<zBC<xx+wzAwzBC<x
32 1 2 3 rlim2 φzABCx+wzAwzBC<x
33 31 32 sylibrd φx+yzAy<zBC<xzABC
34 15 33 impbid φzABCx+yzAy<zBC<x