Metamath Proof Explorer


Theorem rngisomring1

Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025)

Ref Expression
Assertion rngisomring1 RRingSRngFRRngIsoS1S=F1R

Proof

Step Hyp Ref Expression
1 eqid 1R=1R
2 eqid BaseS=BaseS
3 eqid S=S
4 1 2 3 rngisom1 RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=x
5 eqidd RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xBaseS=BaseS
6 eqidd RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xS=S
7 eqid BaseR=BaseR
8 7 2 rngimf1o FRRngIsoSF:BaseR1-1 ontoBaseS
9 f1of F:BaseR1-1 ontoBaseSF:BaseRBaseS
10 8 9 syl FRRngIsoSF:BaseRBaseS
11 10 3ad2ant3 RRingSRngFRRngIsoSF:BaseRBaseS
12 7 1 ringidcl RRing1RBaseR
13 12 3ad2ant1 RRingSRngFRRngIsoS1RBaseR
14 11 13 ffvelcdmd RRingSRngFRRngIsoSF1RBaseS
15 14 adantr RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xF1RBaseS
16 oveq2 x=yF1RSx=F1RSy
17 id x=yx=y
18 16 17 eqeq12d x=yF1RSx=xF1RSy=y
19 oveq1 x=yxSF1R=ySF1R
20 19 17 eqeq12d x=yxSF1R=xySF1R=y
21 18 20 anbi12d x=yF1RSx=xxSF1R=xF1RSy=yySF1R=y
22 21 rspccv xBaseSF1RSx=xxSF1R=xyBaseSF1RSy=yySF1R=y
23 22 adantl RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xyBaseSF1RSy=yySF1R=y
24 simpl F1RSy=yySF1R=yF1RSy=y
25 23 24 syl6 RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xyBaseSF1RSy=y
26 25 imp RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xyBaseSF1RSy=y
27 simpr F1RSy=yySF1R=yySF1R=y
28 23 27 syl6 RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xyBaseSySF1R=y
29 28 imp RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xyBaseSySF1R=y
30 5 6 15 26 29 ringurd RRingSRngFRRngIsoSxBaseSF1RSx=xxSF1R=xF1R=1S
31 4 30 mpdan RRingSRngFRRngIsoSF1R=1S
32 31 eqcomd RRingSRngFRRngIsoS1S=F1R