Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | rngisomring1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 1 2 3 | rngisom1 | |
5 | eqidd | |
|
6 | eqidd | |
|
7 | eqid | |
|
8 | 7 2 | rngimf1o | |
9 | f1of | |
|
10 | 8 9 | syl | |
11 | 10 | 3ad2ant3 | |
12 | 7 1 | ringidcl | |
13 | 12 | 3ad2ant1 | |
14 | 11 13 | ffvelcdmd | |
15 | 14 | adantr | |
16 | oveq2 | |
|
17 | id | |
|
18 | 16 17 | eqeq12d | |
19 | oveq1 | |
|
20 | 19 17 | eqeq12d | |
21 | 18 20 | anbi12d | |
22 | 21 | rspccv | |
23 | 22 | adantl | |
24 | simpl | |
|
25 | 23 24 | syl6 | |
26 | 25 | imp | |
27 | simpr | |
|
28 | 23 27 | syl6 | |
29 | 28 | imp | |
30 | 5 6 15 26 29 | ringurd | |
31 | 4 30 | mpdan | |
32 | 31 | eqcomd | |