Metamath Proof Explorer


Theorem rnglidl1

Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 . (Contributed by AV, 19-Feb-2025)

Ref Expression
Hypotheses rnglidl0.u U=LIdealR
rnglidl1.b B=BaseR
Assertion rnglidl1 RRngBU

Proof

Step Hyp Ref Expression
1 rnglidl0.u U=LIdealR
2 rnglidl1.b B=BaseR
3 2 eqimssi BBaseR
4 3 a1i RRngBBaseR
5 rnggrp RRngRGrp
6 2 grpbn0 RGrpB
7 5 6 syl RRngB
8 eqid +R=+R
9 5 adantr RRngxBaseRyBzBRGrp
10 simpl RRngxBaseRyBzBRRng
11 2 eqcomi BaseR=B
12 11 eleq2i xBaseRxB
13 12 biimpi xBaseRxB
14 13 3ad2ant1 xBaseRyBzBxB
15 14 adantl RRngxBaseRyBzBxB
16 simpr2 RRngxBaseRyBzByB
17 eqid R=R
18 2 17 rngcl RRngxByBxRyB
19 10 15 16 18 syl3anc RRngxBaseRyBzBxRyB
20 simpr3 RRngxBaseRyBzBzB
21 2 8 9 19 20 grpcld RRngxBaseRyBzBxRy+RzB
22 21 ralrimivvva RRngxBaseRyBzBxRy+RzB
23 eqid BaseR=BaseR
24 1 23 8 17 islidl BUBBaseRBxBaseRyBzBxRy+RzB
25 4 7 22 24 syl3anbrc RRngBU