Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 . (Contributed by AV, 19-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnglidl0.u | |
|
rnglidl1.b | |
||
Assertion | rnglidl1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnglidl0.u | |
|
2 | rnglidl1.b | |
|
3 | 2 | eqimssi | |
4 | 3 | a1i | |
5 | rnggrp | |
|
6 | 2 | grpbn0 | |
7 | 5 6 | syl | |
8 | eqid | |
|
9 | 5 | adantr | |
10 | simpl | |
|
11 | 2 | eqcomi | |
12 | 11 | eleq2i | |
13 | 12 | biimpi | |
14 | 13 | 3ad2ant1 | |
15 | 14 | adantl | |
16 | simpr2 | |
|
17 | eqid | |
|
18 | 2 17 | rngcl | |
19 | 10 15 16 18 | syl3anc | |
20 | simpr3 | |
|
21 | 2 8 9 19 20 | grpcld | |
22 | 21 | ralrimivvva | |
23 | eqid | |
|
24 | 1 23 8 17 | islidl | |
25 | 4 7 22 24 | syl3anbrc | |