Metamath Proof Explorer


Theorem rngmneg1

Description: Negation of a product in a non-unital ring ( mulneg1 analog). In contrast to ringmneg1 , the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025)

Ref Expression
Hypotheses rngneglmul.b B=BaseR
rngneglmul.t ·˙=R
rngneglmul.n N=invgR
rngneglmul.r φRRng
rngneglmul.x φXB
rngneglmul.y φYB
Assertion rngmneg1 φNX·˙Y=NX·˙Y

Proof

Step Hyp Ref Expression
1 rngneglmul.b B=BaseR
2 rngneglmul.t ·˙=R
3 rngneglmul.n N=invgR
4 rngneglmul.r φRRng
5 rngneglmul.x φXB
6 rngneglmul.y φYB
7 eqid +R=+R
8 eqid 0R=0R
9 rnggrp RRngRGrp
10 4 9 syl φRGrp
11 1 7 8 3 10 5 grprinvd φX+RNX=0R
12 11 oveq1d φX+RNX·˙Y=0R·˙Y
13 1 2 8 rnglz RRngYB0R·˙Y=0R
14 4 6 13 syl2anc φ0R·˙Y=0R
15 12 14 eqtrd φX+RNX·˙Y=0R
16 1 2 rngcl RRngXBYBX·˙YB
17 4 5 6 16 syl3anc φX·˙YB
18 1 3 10 5 grpinvcld φNXB
19 1 2 rngcl RRngNXBYBNX·˙YB
20 4 18 6 19 syl3anc φNX·˙YB
21 1 7 8 3 grpinvid1 RGrpX·˙YBNX·˙YBNX·˙Y=NX·˙YX·˙Y+RNX·˙Y=0R
22 10 17 20 21 syl3anc φNX·˙Y=NX·˙YX·˙Y+RNX·˙Y=0R
23 1 7 2 rngdir RRngXBNXBYBX+RNX·˙Y=X·˙Y+RNX·˙Y
24 23 eqcomd RRngXBNXBYBX·˙Y+RNX·˙Y=X+RNX·˙Y
25 4 5 18 6 24 syl13anc φX·˙Y+RNX·˙Y=X+RNX·˙Y
26 25 eqeq1d φX·˙Y+RNX·˙Y=0RX+RNX·˙Y=0R
27 22 26 bitrd φNX·˙Y=NX·˙YX+RNX·˙Y=0R
28 15 27 mpbird φNX·˙Y=NX·˙Y
29 28 eqcomd φNX·˙Y=NX·˙Y