Metamath Proof Explorer


Theorem rngoneglmul

Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringnegmul.1 G=1stR
ringnegmul.2 H=2ndR
ringnegmul.3 X=ranG
ringnegmul.4 N=invG
Assertion rngoneglmul RRingOpsAXBXNAHB=NAHB

Proof

Step Hyp Ref Expression
1 ringnegmul.1 G=1stR
2 ringnegmul.2 H=2ndR
3 ringnegmul.3 X=ranG
4 ringnegmul.4 N=invG
5 1 rneqi ranG=ran1stR
6 3 5 eqtri X=ran1stR
7 eqid GIdH=GIdH
8 6 2 7 rngo1cl RRingOpsGIdHX
9 1 3 4 rngonegcl RRingOpsGIdHXNGIdHX
10 8 9 mpdan RRingOpsNGIdHX
11 1 2 3 rngoass RRingOpsNGIdHXAXBXNGIdHHAHB=NGIdHHAHB
12 11 3exp2 RRingOpsNGIdHXAXBXNGIdHHAHB=NGIdHHAHB
13 10 12 mpd RRingOpsAXBXNGIdHHAHB=NGIdHHAHB
14 13 3imp RRingOpsAXBXNGIdHHAHB=NGIdHHAHB
15 1 2 3 4 7 rngonegmn1l RRingOpsAXNA=NGIdHHA
16 15 3adant3 RRingOpsAXBXNA=NGIdHHA
17 16 oveq1d RRingOpsAXBXNAHB=NGIdHHAHB
18 1 2 3 rngocl RRingOpsAXBXAHBX
19 18 3expb RRingOpsAXBXAHBX
20 1 2 3 4 7 rngonegmn1l RRingOpsAHBXNAHB=NGIdHHAHB
21 19 20 syldan RRingOpsAXBXNAHB=NGIdHHAHB
22 21 3impb RRingOpsAXBXNAHB=NGIdHHAHB
23 14 17 22 3eqtr4rd RRingOpsAXBXNAHB=NAHB