Metamath Proof Explorer


Theorem rngosn3

Description: Obsolete as of 25-Jan-2020. Use ring1zr or srg1zr instead. The only unital ring with a base set consisting in one element is the zero ring. (Contributed by FL, 13-Feb-2010) (Proof shortened by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses on1el3.1 G=1stR
on1el3.2 X=ranG
Assertion rngosn3 RRingOpsABX=AR=AAAAAA

Proof

Step Hyp Ref Expression
1 on1el3.1 G=1stR
2 on1el3.2 X=ranG
3 1 rngogrpo RRingOpsGGrpOp
4 2 grpofo GGrpOpG:X×XontoX
5 fof G:X×XontoXG:X×XX
6 3 4 5 3syl RRingOpsG:X×XX
7 6 adantr RRingOpsABG:X×XX
8 id X=AX=A
9 8 sqxpeqd X=AX×X=A×A
10 9 8 feq23d X=AG:X×XXG:A×AA
11 7 10 syl5ibcom RRingOpsABX=AG:A×AA
12 7 fdmd RRingOpsABdomG=X×X
13 12 eqcomd RRingOpsABX×X=domG
14 fdm G:A×AAdomG=A×A
15 14 eqeq2d G:A×AAX×X=domGX×X=A×A
16 13 15 syl5ibcom RRingOpsABG:A×AAX×X=A×A
17 xpid11 X×X=A×AX=A
18 16 17 imbitrdi RRingOpsABG:A×AAX=A
19 11 18 impbid RRingOpsABX=AG:A×AA
20 simpr RRingOpsABAB
21 xpsng ABABA×A=AA
22 20 21 sylancom RRingOpsABA×A=AA
23 22 feq2d RRingOpsABG:A×AAG:AAA
24 opex AAV
25 fsng AAVABG:AAAG=AAA
26 24 20 25 sylancr RRingOpsABG:AAAG=AAA
27 19 23 26 3bitrd RRingOpsABX=AG=AAA
28 1 eqeq1i G=AAA1stR=AAA
29 27 28 bitrdi RRingOpsABX=A1stR=AAA
30 29 anbi1d RRingOpsABX=A2ndR=AAA1stR=AAA2ndR=AAA
31 eqid 2ndR=2ndR
32 1 31 2 rngosm RRingOps2ndR:X×XX
33 32 adantr RRingOpsAB2ndR:X×XX
34 9 8 feq23d X=A2ndR:X×XX2ndR:A×AA
35 33 34 syl5ibcom RRingOpsABX=A2ndR:A×AA
36 22 feq2d RRingOpsAB2ndR:A×AA2ndR:AAA
37 fsng AAVAB2ndR:AAA2ndR=AAA
38 24 20 37 sylancr RRingOpsAB2ndR:AAA2ndR=AAA
39 36 38 bitrd RRingOpsAB2ndR:A×AA2ndR=AAA
40 35 39 sylibd RRingOpsABX=A2ndR=AAA
41 40 pm4.71d RRingOpsABX=AX=A2ndR=AAA
42 relrngo RelRingOps
43 df-rel RelRingOpsRingOpsV×V
44 42 43 mpbi RingOpsV×V
45 44 sseli RRingOpsRV×V
46 45 adantr RRingOpsABRV×V
47 eqop RV×VR=AAAAAA1stR=AAA2ndR=AAA
48 46 47 syl RRingOpsABR=AAAAAA1stR=AAA2ndR=AAA
49 30 41 48 3bitr4d RRingOpsABX=AR=AAAAAA