Description: Obsolete as of 25-Jan-2020. Use ring1zr or srg1zr instead. The only unital ring with a base set consisting in one element is the zero ring. (Contributed by FL, 13-Feb-2010) (Proof shortened by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | on1el3.1 | |
|
on1el3.2 | |
||
Assertion | rngosn3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on1el3.1 | |
|
2 | on1el3.2 | |
|
3 | 1 | rngogrpo | |
4 | 2 | grpofo | |
5 | fof | |
|
6 | 3 4 5 | 3syl | |
7 | 6 | adantr | |
8 | id | |
|
9 | 8 | sqxpeqd | |
10 | 9 8 | feq23d | |
11 | 7 10 | syl5ibcom | |
12 | 7 | fdmd | |
13 | 12 | eqcomd | |
14 | fdm | |
|
15 | 14 | eqeq2d | |
16 | 13 15 | syl5ibcom | |
17 | xpid11 | |
|
18 | 16 17 | imbitrdi | |
19 | 11 18 | impbid | |
20 | simpr | |
|
21 | xpsng | |
|
22 | 20 21 | sylancom | |
23 | 22 | feq2d | |
24 | opex | |
|
25 | fsng | |
|
26 | 24 20 25 | sylancr | |
27 | 19 23 26 | 3bitrd | |
28 | 1 | eqeq1i | |
29 | 27 28 | bitrdi | |
30 | 29 | anbi1d | |
31 | eqid | |
|
32 | 1 31 2 | rngosm | |
33 | 32 | adantr | |
34 | 9 8 | feq23d | |
35 | 33 34 | syl5ibcom | |
36 | 22 | feq2d | |
37 | fsng | |
|
38 | 24 20 37 | sylancr | |
39 | 36 38 | bitrd | |
40 | 35 39 | sylibd | |
41 | 40 | pm4.71d | |
42 | relrngo | |
|
43 | df-rel | |
|
44 | 42 43 | mpbi | |
45 | 44 | sseli | |
46 | 45 | adantr | |
47 | eqop | |
|
48 | 46 47 | syl | |
49 | 30 41 48 | 3bitr4d | |