Metamath Proof Explorer


Theorem rngqiprngim

Description: F is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
rngqiprngim.f F=xBx˙1˙·˙x
Assertion rngqiprngim φFRRngIsoP

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 rngqiprngim.f F=xBx˙1˙·˙x
13 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngho φFRRngHomP
14 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf1 φF:B1-1C×I
15 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfo φF:BontoC×I
16 df-f1o F:B1-1 ontoC×IF:B1-1C×IF:BontoC×I
17 14 15 16 sylanbrc φF:B1-1 ontoC×I
18 1 2 3 4 5 6 7 8 9 10 11 rngqipbas φBaseP=C×I
19 18 f1oeq3d φF:B1-1 ontoBasePF:B1-1 ontoC×I
20 17 19 mpbird φF:B1-1 ontoBaseP
21 11 ovexi PV
22 eqid BaseP=BaseP
23 5 22 isrngim2 RRngPVFRRngIsoPFRRngHomPF:B1-1 ontoBaseP
24 1 21 23 sylancl φFRRngIsoPFRRngHomPF:B1-1 ontoBaseP
25 13 20 24 mpbir2and φFRRngIsoP