Description: Lemma 1 for rngqiprnglin . (Contributed by AV, 28-Feb-2025) (Proof shortened by AV, 24-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
Assertion | rngqiprnglinlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | 2 | adantr | |
9 | 3 6 | ressmulr | |
10 | 8 9 | syl | |
11 | 10 | oveqd | |
12 | eqid | |
|
13 | eqid | |
|
14 | 4 | adantr | |
15 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | |
16 | 15 | adantrr | |
17 | 12 13 7 14 16 | ringridmd | |
18 | 11 17 | eqtrd | |
19 | 18 | oveq1d | |
20 | 1 | adantr | |
21 | 1 2 3 4 5 6 7 | rngqiprng1elbas | |
22 | 21 | adantr | |
23 | simprl | |
|
24 | 5 6 | rngcl | |
25 | 20 22 23 24 | syl3anc | |
26 | simprr | |
|
27 | 5 6 | rngass | |
28 | 20 25 22 26 27 | syl13anc | |
29 | 5 6 | rngass | |
30 | 20 22 23 26 29 | syl13anc | |
31 | 19 28 30 | 3eqtr3d | |