Metamath Proof Explorer


Theorem rrxbasefi

Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of ( RR ^m X ) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rrxbasefi.x φXFin
rrxbasefi.h H=msup
rrxbasefi.b B=BaseH
Assertion rrxbasefi φB=X

Proof

Step Hyp Ref Expression
1 rrxbasefi.x φXFin
2 rrxbasefi.h H=msup
3 rrxbasefi.b B=BaseH
4 2 3 rrxbase XFinB=fX|finSupp0f
5 1 4 syl φB=fX|finSupp0f
6 ssrab2 fX|finSupp0fX
7 5 6 eqsstrdi φBX
8 simpr φfXfX
9 elmapi fXf:X
10 9 adantl φfXf:X
11 1 adantr φfXXFin
12 c0ex 0V
13 12 a1i φfX0V
14 10 11 13 fdmfifsupp φfXfinSupp0f
15 rabid ffX|finSupp0ffXfinSupp0f
16 8 14 15 sylanbrc φfXffX|finSupp0f
17 5 eqcomd φfX|finSupp0f=B
18 17 adantr φfXfX|finSupp0f=B
19 16 18 eleqtrd φfXfB
20 7 19 eqelssd φB=X