Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of ( RR ^m X ) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrxbasefi.x | |
|
rrxbasefi.h | |
||
rrxbasefi.b | |
||
Assertion | rrxbasefi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxbasefi.x | |
|
2 | rrxbasefi.h | |
|
3 | rrxbasefi.b | |
|
4 | 2 3 | rrxbase | |
5 | 1 4 | syl | |
6 | ssrab2 | |
|
7 | 5 6 | eqsstrdi | |
8 | simpr | |
|
9 | elmapi | |
|
10 | 9 | adantl | |
11 | 1 | adantr | |
12 | c0ex | |
|
13 | 12 | a1i | |
14 | 10 11 13 | fdmfifsupp | |
15 | rabid | |
|
16 | 8 14 15 | sylanbrc | |
17 | 5 | eqcomd | |
18 | 17 | adantr | |
19 | 16 18 | eleqtrd | |
20 | 7 19 | eqelssd | |