Metamath Proof Explorer


Theorem rusgrnumwwlkb0

Description: Induction base 0 for rusgrnumwwlk . Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V=VtxG
rusgrnumwwlk.l L=vV,n0wnWWalksNG|w0=v
Assertion rusgrnumwwlkb0 GUSHGraphPVPL0=1

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V=VtxG
2 rusgrnumwwlk.l L=vV,n0wnWWalksNG|w0=v
3 simpr GUSHGraphPVPV
4 0nn0 00
5 1 2 rusgrnumwwlklem PV00PL0=w0WWalksNG|w0=P
6 3 4 5 sylancl GUSHGraphPVPL0=w0WWalksNG|w0=P
7 df-rab w0WWalksNG|w0=P=w|w0WWalksNGw0=P
8 7 a1i GUSHGraphPVw0WWalksNG|w0=P=w|w0WWalksNGw0=P
9 wwlksn0s 0WWalksNG=wWordVtxG|w=1
10 9 a1i GUSHGraphPV0WWalksNG=wWordVtxG|w=1
11 10 eleq2d GUSHGraphPVw0WWalksNGwwWordVtxG|w=1
12 rabid wwWordVtxG|w=1wWordVtxGw=1
13 11 12 bitrdi GUSHGraphPVw0WWalksNGwWordVtxGw=1
14 13 anbi1d GUSHGraphPVw0WWalksNGw0=PwWordVtxGw=1w0=P
15 14 abbidv GUSHGraphPVw|w0WWalksNGw0=P=w|wWordVtxGw=1w0=P
16 wrdl1s1 PVtxGv=⟨“P”⟩vWordVtxGv=1v0=P
17 df-3an vWordVtxGv=1v0=PvWordVtxGv=1v0=P
18 16 17 bitr2di PVtxGvWordVtxGv=1v0=Pv=⟨“P”⟩
19 vex vV
20 eleq1w w=vwWordVtxGvWordVtxG
21 fveqeq2 w=vw=1v=1
22 20 21 anbi12d w=vwWordVtxGw=1vWordVtxGv=1
23 fveq1 w=vw0=v0
24 23 eqeq1d w=vw0=Pv0=P
25 22 24 anbi12d w=vwWordVtxGw=1w0=PvWordVtxGv=1v0=P
26 19 25 elab vw|wWordVtxGw=1w0=PvWordVtxGv=1v0=P
27 velsn v⟨“P”⟩v=⟨“P”⟩
28 18 26 27 3bitr4g PVtxGvw|wWordVtxGw=1w0=Pv⟨“P”⟩
29 28 1 eleq2s PVvw|wWordVtxGw=1w0=Pv⟨“P”⟩
30 29 eqrdv PVw|wWordVtxGw=1w0=P=⟨“P”⟩
31 30 adantl GUSHGraphPVw|wWordVtxGw=1w0=P=⟨“P”⟩
32 8 15 31 3eqtrd GUSHGraphPVw0WWalksNG|w0=P=⟨“P”⟩
33 32 fveq2d GUSHGraphPVw0WWalksNG|w0=P=⟨“P”⟩
34 s1cl PV⟨“P”⟩WordV
35 hashsng ⟨“P”⟩WordV⟨“P”⟩=1
36 34 35 syl PV⟨“P”⟩=1
37 36 adantl GUSHGraphPV⟨“P”⟩=1
38 6 33 37 3eqtrd GUSHGraphPVPL0=1