Metamath Proof Explorer


Theorem sadass

Description: Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Assertion sadass A0B0C0AsaddBsaddC=AsaddBsaddC

Proof

Step Hyp Ref Expression
1 sadcl A0B0AsaddB0
2 sadcl AsaddB0C0AsaddBsaddC0
3 1 2 stoic3 A0B0C0AsaddBsaddC0
4 3 sseld A0B0C0kAsaddBsaddCk0
5 simp1 A0B0C0A0
6 sadcl B0C0BsaddC0
7 6 3adant1 A0B0C0BsaddC0
8 sadcl A0BsaddC0AsaddBsaddC0
9 5 7 8 syl2anc A0B0C0AsaddBsaddC0
10 9 sseld A0B0C0kAsaddBsaddCk0
11 simpl1 A0B0C0k0A0
12 simpl2 A0B0C0k0B0
13 simpl3 A0B0C0k0C0
14 simpr A0B0C0k0k0
15 1nn0 10
16 15 a1i A0B0C0k010
17 14 16 nn0addcld A0B0C0k0k+10
18 11 12 13 17 sadasslem A0B0C0k0AsaddBsaddC0..^k+1=AsaddBsaddC0..^k+1
19 18 eleq2d A0B0C0k0kAsaddBsaddC0..^k+1kAsaddBsaddC0..^k+1
20 elin kAsaddBsaddC0..^k+1kAsaddBsaddCk0..^k+1
21 elin kAsaddBsaddC0..^k+1kAsaddBsaddCk0..^k+1
22 19 20 21 3bitr3g A0B0C0k0kAsaddBsaddCk0..^k+1kAsaddBsaddCk0..^k+1
23 nn0uz 0=0
24 14 23 eleqtrdi A0B0C0k0k0
25 eluzfz2 k0k0k
26 24 25 syl A0B0C0k0k0k
27 14 nn0zd A0B0C0k0k
28 fzval3 k0k=0..^k+1
29 27 28 syl A0B0C0k00k=0..^k+1
30 26 29 eleqtrd A0B0C0k0k0..^k+1
31 30 biantrud A0B0C0k0kAsaddBsaddCkAsaddBsaddCk0..^k+1
32 30 biantrud A0B0C0k0kAsaddBsaddCkAsaddBsaddCk0..^k+1
33 22 31 32 3bitr4d A0B0C0k0kAsaddBsaddCkAsaddBsaddC
34 33 ex A0B0C0k0kAsaddBsaddCkAsaddBsaddC
35 4 10 34 pm5.21ndd A0B0C0kAsaddBsaddCkAsaddBsaddC
36 35 eqrdv A0B0C0AsaddBsaddC=AsaddBsaddC