Metamath Proof Explorer


Theorem salgenss

Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of Fremlin1 p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex , where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salgenss.x φXV
salgenss.g G=SalGenX
salgenss.s φSSAlg
salgenss.i φXS
salgenss.u φS=X
Assertion salgenss φGS

Proof

Step Hyp Ref Expression
1 salgenss.x φXV
2 salgenss.g G=SalGenX
3 salgenss.s φSSAlg
4 salgenss.i φXS
5 salgenss.u φS=X
6 2 a1i φG=SalGenX
7 salgenval XVSalGenX=sSAlg|s=XXs
8 1 7 syl φSalGenX=sSAlg|s=XXs
9 6 8 eqtrd φG=sSAlg|s=XXs
10 5 4 jca φS=XXS
11 3 10 jca φSSAlgS=XXS
12 unieq s=Ss=S
13 12 eqeq1d s=Ss=XS=X
14 sseq2 s=SXsXS
15 13 14 anbi12d s=Ss=XXsS=XXS
16 15 elrab SsSAlg|s=XXsSSAlgS=XXS
17 11 16 sylibr φSsSAlg|s=XXs
18 intss1 SsSAlg|s=XXssSAlg|s=XXsS
19 17 18 syl φsSAlg|s=XXsS
20 9 19 eqsstrd φGS