Metamath Proof Explorer


Theorem saliinclf

Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses saliinclf.1 kφ
saliinclf.2 _kS
saliinclf.3 _kK
saliinclf.4 φSSAlg
saliinclf.5 φKω
saliinclf.6 φK
saliinclf.7 φkKES
Assertion saliinclf φkKES

Proof

Step Hyp Ref Expression
1 saliinclf.1 kφ
2 saliinclf.2 _kS
3 saliinclf.3 _kK
4 saliinclf.4 φSSAlg
5 saliinclf.5 φKω
6 saliinclf.6 φK
7 saliinclf.7 φkKES
8 incom ES=SE
9 elssuni ESES
10 7 9 syl φkKES
11 df-ss ESES=E
12 10 11 sylib φkKES=E
13 dfin4 SE=SSE
14 13 a1i φkKSE=SSE
15 8 12 14 3eqtr3a φkKE=SSE
16 1 15 iineq2d φkKE=kKSSE
17 2 nfuni _kS
18 3 17 iindif2f KkKSSE=SkKSE
19 6 18 syl φkKSSE=SkKSE
20 16 19 eqtrd φkKE=SkKSE
21 saldifcl SSAlgESSES
22 4 7 21 syl2an2r φkKSES
23 1 2 3 4 5 22 saliunclf φkKSES
24 saldifcl SSAlgkKSESSkKSES
25 4 23 24 syl2anc φSkKSES
26 20 25 eqeltrd φkKES