Metamath Proof Explorer


Theorem scmatfo

Description: There is a function from a ring onto any ring of scalar matrices over this ring. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K=BaseR
scmatrhmval.a A=NMatR
scmatrhmval.o 1˙=1A
scmatrhmval.t ˙=A
scmatrhmval.f F=xKx˙1˙
scmatrhmval.c C=NScMatR
Assertion scmatfo NFinRRingF:KontoC

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K=BaseR
2 scmatrhmval.a A=NMatR
3 scmatrhmval.o 1˙=1A
4 scmatrhmval.t ˙=A
5 scmatrhmval.f F=xKx˙1˙
6 scmatrhmval.c C=NScMatR
7 1 2 3 4 5 6 scmatf NFinRRingF:KC
8 eqid BaseA=BaseA
9 1 2 8 3 4 6 scmatscmid NFinRRingyCcKy=c˙1˙
10 9 3expa NFinRRingyCcKy=c˙1˙
11 1 2 3 4 5 scmatrhmval RRingcKFc=c˙1˙
12 11 adantll NFinRRingcKFc=c˙1˙
13 12 eqcomd NFinRRingcKc˙1˙=Fc
14 13 eqeq2d NFinRRingcKy=c˙1˙y=Fc
15 14 biimpd NFinRRingcKy=c˙1˙y=Fc
16 15 reximdva NFinRRingcKy=c˙1˙cKy=Fc
17 16 adantr NFinRRingyCcKy=c˙1˙cKy=Fc
18 10 17 mpd NFinRRingyCcKy=Fc
19 18 ralrimiva NFinRRingyCcKy=Fc
20 dffo3 F:KontoCF:KCyCcKy=Fc
21 7 19 20 sylanbrc NFinRRingF:KontoC