Metamath Proof Explorer


Theorem scmatlss

Description: The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatlss.a A=NMatR
scmatlss.s S=NScMatR
Assertion scmatlss NFinRRingSLSubSpA

Proof

Step Hyp Ref Expression
1 scmatlss.a A=NMatR
2 scmatlss.s S=NScMatR
3 1 matsca2 NFinRRingR=ScalarA
4 eqidd NFinRRingBaseR=BaseR
5 eqidd NFinRRingBaseA=BaseA
6 eqidd NFinRRing+A=+A
7 eqidd NFinRRingA=A
8 eqidd NFinRRingLSubSpA=LSubSpA
9 eqid BaseR=BaseR
10 eqid BaseA=BaseA
11 eqid 1A=1A
12 eqid A=A
13 9 1 10 11 12 2 scmatval NFinRRingS=mBaseA|cBaseRm=cA1A
14 ssrab2 mBaseA|cBaseRm=cA1ABaseA
15 13 14 eqsstrdi NFinRRingSBaseA
16 eqid 0R=0R
17 1 10 9 16 2 scmatid NFinRRing1AS
18 17 ne0d NFinRRingS
19 9 1 2 12 smatvscl NFinRRingaBaseRxSaAxS
20 19 3adantr3 NFinRRingaBaseRxSySaAxS
21 simpr3 NFinRRingaBaseRxSySyS
22 20 21 jca NFinRRingaBaseRxSySaAxSyS
23 1 10 9 16 2 scmataddcl NFinRRingaAxSySaAx+AyS
24 22 23 syldan NFinRRingaBaseRxSySaAx+AyS
25 3 4 5 6 7 8 15 18 24 islssd NFinRRingSLSubSpA