Metamath Proof Explorer


Theorem scmatmats

Description: The set of an N x N scalar matrices over the ring R expressed as a subset of N x N matrices over the ring R with certain properties for their entries. (Contributed by AV, 31-Oct-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatmat.a A=NMatR
scmatmat.b B=BaseA
scmatmat.s S=NScMatR
scmate.k K=BaseR
scmate.0 0˙=0R
Assertion scmatmats NFinRRingS=mB|cKiNjNimj=ifi=jc0˙

Proof

Step Hyp Ref Expression
1 scmatmat.a A=NMatR
2 scmatmat.b B=BaseA
3 scmatmat.s S=NScMatR
4 scmate.k K=BaseR
5 scmate.0 0˙=0R
6 eqid 1A=1A
7 eqid A=A
8 4 1 2 6 7 3 scmatval NFinRRingS=mB|cKm=cA1A
9 simpr NFinRRingmBmB
10 9 adantr NFinRRingmBcKmB
11 simpll NFinRRingmBcKNFinRRing
12 1 matring NFinRRingARing
13 2 6 ringidcl ARing1AB
14 12 13 syl NFinRRing1AB
15 14 adantr NFinRRingmB1AB
16 15 anim1ci NFinRRingmBcKcK1AB
17 4 1 2 7 matvscl NFinRRingcK1ABcA1AB
18 11 16 17 syl2anc NFinRRingmBcKcA1AB
19 1 2 eqmat mBcA1ABm=cA1AiNjNimj=icA1Aj
20 10 18 19 syl2anc NFinRRingmBcKm=cA1AiNjNimj=icA1Aj
21 simplll NFinRRingmBcKNFin
22 simpllr NFinRRingmBcKRRing
23 simpr NFinRRingmBcKcK
24 21 22 23 3jca NFinRRingmBcKNFinRRingcK
25 1 4 5 6 7 scmatscmide NFinRRingcKiNjNicA1Aj=ifi=jc0˙
26 24 25 sylan NFinRRingmBcKiNjNicA1Aj=ifi=jc0˙
27 26 eqeq2d NFinRRingmBcKiNjNimj=icA1Ajimj=ifi=jc0˙
28 27 2ralbidva NFinRRingmBcKiNjNimj=icA1AjiNjNimj=ifi=jc0˙
29 20 28 bitrd NFinRRingmBcKm=cA1AiNjNimj=ifi=jc0˙
30 29 rexbidva NFinRRingmBcKm=cA1AcKiNjNimj=ifi=jc0˙
31 30 rabbidva NFinRRingmB|cKm=cA1A=mB|cKiNjNimj=ifi=jc0˙
32 8 31 eqtrd NFinRRingS=mB|cKiNjNimj=ifi=jc0˙