Metamath Proof Explorer


Theorem scmatsrng1

Description: The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
scmatsgrp1.d D=NDMatR
scmatsgrp1.c C=A𝑠D
Assertion scmatsrng1 NFinRRingSSubRingC

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 scmatsgrp1.d D=NDMatR
7 scmatsgrp1.c C=A𝑠D
8 1 2 3 4 5 6 7 scmatsgrp1 NFinRRingSSubGrpC
9 1 2 4 6 dmatsrng RRingNFinDSubRingA
10 9 ancoms NFinRRingDSubRingA
11 eqid 1A=1A
12 7 11 subrg1 DSubRingA1A=1C
13 10 12 syl NFinRRing1A=1C
14 13 eqcomd NFinRRing1C=1A
15 1 2 3 4 5 scmatid NFinRRing1AS
16 14 15 eqeltrd NFinRRing1CS
17 eqid A=A
18 7 17 ressmulr DSubRingAA=C
19 10 18 syl NFinRRingA=C
20 19 eqcomd NFinRRingC=A
21 20 oveqdr NFinRRingxSySxCy=xAy
22 1 2 3 4 5 scmatmulcl NFinRRingxSySxAyS
23 21 22 eqeltrd NFinRRingxSySxCyS
24 23 ralrimivva NFinRRingxSySxCyS
25 7 subrgring DSubRingACRing
26 eqid BaseC=BaseC
27 eqid 1C=1C
28 eqid C=C
29 26 27 28 issubrg2 CRingSSubRingCSSubGrpC1CSxSySxCyS
30 10 25 29 3syl NFinRRingSSubRingCSSubGrpC1CSxSySxCyS
31 8 16 24 30 mpbir3and NFinRRingSSubRingC