Metamath Proof Explorer


Theorem scutbdaybnd

Description: An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion scutbdaybnd AsBOOnbdayABObdayA|sBO

Proof

Step Hyp Ref Expression
1 etasslt AsBOOnbdayABOxNoAsxxsBbdayxO
2 simpl1 AsBOOnbdayABOxNoAsxxsBbdayxOAsB
3 scutbday AsBbdayA|sB=bdayyNo|AsyysB
4 2 3 syl AsBOOnbdayABOxNoAsxxsBbdayxObdayA|sB=bdayyNo|AsyysB
5 bdayfn bdayFnNo
6 ssrab2 yNo|AsyysBNo
7 sneq y=xy=x
8 7 breq2d y=xAsyAsx
9 7 breq1d y=xysBxsB
10 8 9 anbi12d y=xAsyysBAsxxsB
11 simprl AsBOOnbdayABOxNoAsxxsBbdayxOxNo
12 simprr1 AsBOOnbdayABOxNoAsxxsBbdayxOAsx
13 simprr2 AsBOOnbdayABOxNoAsxxsBbdayxOxsB
14 12 13 jca AsBOOnbdayABOxNoAsxxsBbdayxOAsxxsB
15 10 11 14 elrabd AsBOOnbdayABOxNoAsxxsBbdayxOxyNo|AsyysB
16 fnfvima bdayFnNoyNo|AsyysBNoxyNo|AsyysBbdayxbdayyNo|AsyysB
17 5 6 15 16 mp3an12i AsBOOnbdayABOxNoAsxxsBbdayxObdayxbdayyNo|AsyysB
18 intss1 bdayxbdayyNo|AsyysBbdayyNo|AsyysBbdayx
19 17 18 syl AsBOOnbdayABOxNoAsxxsBbdayxObdayyNo|AsyysBbdayx
20 4 19 eqsstrd AsBOOnbdayABOxNoAsxxsBbdayxObdayA|sBbdayx
21 simprr3 AsBOOnbdayABOxNoAsxxsBbdayxObdayxO
22 20 21 sstrd AsBOOnbdayABOxNoAsxxsBbdayxObdayA|sBO
23 1 22 rexlimddv AsBOOnbdayABObdayA|sBO