Metamath Proof Explorer


Theorem selvval2

Description: Value of the "variable selection" function. Convert selvval into a simpler form by using evlsevl . (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses selvval2.p P=ImPolyR
selvval2.b B=BaseP
selvval2.u U=IJmPolyR
selvval2.t T=JmPolyU
selvval2.c C=algScT
selvval2.d D=CalgScU
selvval2.i φIV
selvval2.r φRCRing
selvval2.j φJI
selvval2.f φFB
Assertion selvval2 φIselectVarsRJF=IevalTDFxIifxJJmVarUxCIJmVarRx

Proof

Step Hyp Ref Expression
1 selvval2.p P=ImPolyR
2 selvval2.b B=BaseP
3 selvval2.u U=IJmPolyR
4 selvval2.t T=JmPolyU
5 selvval2.c C=algScT
6 selvval2.d D=CalgScU
7 selvval2.i φIV
8 selvval2.r φRCRing
9 selvval2.j φJI
10 selvval2.f φFB
11 1 2 3 4 5 6 7 8 9 10 selvval φIselectVarsRJF=IevalSubTranDDFxIifxJJmVarUxCIJmVarRx
12 eqid IevalSubTranD=IevalSubTranD
13 eqid IevalT=IevalT
14 eqid ImPolyT𝑠ranD=ImPolyT𝑠ranD
15 eqid T𝑠ranD=T𝑠ranD
16 eqid BaseImPolyT𝑠ranD=BaseImPolyT𝑠ranD
17 7 9 ssexd φJV
18 7 difexd φIJV
19 3 18 8 mplcrngd φUCRing
20 4 17 19 mplcrngd φTCRing
21 3 4 5 6 18 17 8 selvcllem3 φranDSubRingT
22 1 2 3 4 5 6 15 14 16 7 8 9 10 selvcllem4 φDFBaseImPolyT𝑠ranD
23 12 13 14 15 16 7 20 21 22 evlsevl φIevalSubTranDDF=IevalTDF
24 23 fveq1d φIevalSubTranDDFxIifxJJmVarUxCIJmVarRx=IevalTDFxIifxJJmVarUxCIJmVarRx
25 11 24 eqtrd φIselectVarsRJF=IevalTDFxIifxJJmVarUxCIJmVarRx