Metamath Proof Explorer


Theorem seqcl2

Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqcl2.1 φFMC
seqcl2.2 φxCyDx+˙yC
seqcl2.3 φNM
seqcl2.4 φxM+1NFxD
Assertion seqcl2 φseqM+˙FNC

Proof

Step Hyp Ref Expression
1 seqcl2.1 φFMC
2 seqcl2.2 φxCyDx+˙yC
3 seqcl2.3 φNM
4 seqcl2.4 φxM+1NFxD
5 eluzfz2 NMNMN
6 3 5 syl φNMN
7 eleq1 x=MxMNMMN
8 fveq2 x=MseqM+˙Fx=seqM+˙FM
9 8 eleq1d x=MseqM+˙FxCseqM+˙FMC
10 7 9 imbi12d x=MxMNseqM+˙FxCMMNseqM+˙FMC
11 10 imbi2d x=MφxMNseqM+˙FxCφMMNseqM+˙FMC
12 eleq1 x=nxMNnMN
13 fveq2 x=nseqM+˙Fx=seqM+˙Fn
14 13 eleq1d x=nseqM+˙FxCseqM+˙FnC
15 12 14 imbi12d x=nxMNseqM+˙FxCnMNseqM+˙FnC
16 15 imbi2d x=nφxMNseqM+˙FxCφnMNseqM+˙FnC
17 eleq1 x=n+1xMNn+1MN
18 fveq2 x=n+1seqM+˙Fx=seqM+˙Fn+1
19 18 eleq1d x=n+1seqM+˙FxCseqM+˙Fn+1C
20 17 19 imbi12d x=n+1xMNseqM+˙FxCn+1MNseqM+˙Fn+1C
21 20 imbi2d x=n+1φxMNseqM+˙FxCφn+1MNseqM+˙Fn+1C
22 eleq1 x=NxMNNMN
23 fveq2 x=NseqM+˙Fx=seqM+˙FN
24 23 eleq1d x=NseqM+˙FxCseqM+˙FNC
25 22 24 imbi12d x=NxMNseqM+˙FxCNMNseqM+˙FNC
26 25 imbi2d x=NφxMNseqM+˙FxCφNMNseqM+˙FNC
27 seq1 MseqM+˙FM=FM
28 27 eleq1d MseqM+˙FMCFMC
29 1 28 imbitrrid MφseqM+˙FMC
30 29 a1dd MφMMNseqM+˙FMC
31 peano2fzr nMn+1MNnMN
32 31 adantl φnMn+1MNnMN
33 32 expr φnMn+1MNnMN
34 33 imim1d φnMnMNseqM+˙FnCn+1MNseqM+˙FnC
35 fveq2 x=n+1Fx=Fn+1
36 35 eleq1d x=n+1FxDFn+1D
37 4 ralrimiva φxM+1NFxD
38 37 adantr φnMn+1MNxM+1NFxD
39 eluzp1p1 nMn+1M+1
40 39 ad2antrl φnMn+1MNn+1M+1
41 elfzuz3 n+1MNNn+1
42 41 ad2antll φnMn+1MNNn+1
43 elfzuzb n+1M+1Nn+1M+1Nn+1
44 40 42 43 sylanbrc φnMn+1MNn+1M+1N
45 36 38 44 rspcdva φnMn+1MNFn+1D
46 2 caovclg φseqM+˙FnCFn+1DseqM+˙Fn+˙Fn+1C
47 46 ex φseqM+˙FnCFn+1DseqM+˙Fn+˙Fn+1C
48 47 adantr φnMn+1MNseqM+˙FnCFn+1DseqM+˙Fn+˙Fn+1C
49 45 48 mpan2d φnMn+1MNseqM+˙FnCseqM+˙Fn+˙Fn+1C
50 seqp1 nMseqM+˙Fn+1=seqM+˙Fn+˙Fn+1
51 50 ad2antrl φnMn+1MNseqM+˙Fn+1=seqM+˙Fn+˙Fn+1
52 51 eleq1d φnMn+1MNseqM+˙Fn+1CseqM+˙Fn+˙Fn+1C
53 49 52 sylibrd φnMn+1MNseqM+˙FnCseqM+˙Fn+1C
54 34 53 animpimp2impd nMφnMNseqM+˙FnCφn+1MNseqM+˙Fn+1C
55 11 16 21 26 30 54 uzind4 NMφNMNseqM+˙FNC
56 3 55 mpcom φNMNseqM+˙FNC
57 6 56 mpd φseqM+˙FNC