Metamath Proof Explorer


Theorem seqexw

Description: Weak version of seqex that holds without ax-rep . A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Hypotheses seqexw.1 +˙V
seqexw.2 M
Assertion seqexw seqM+˙FV

Proof

Step Hyp Ref Expression
1 seqexw.1 +˙V
2 seqexw.2 M
3 seqfn MseqM+˙FFnM
4 2 3 ax-mp seqM+˙FFnM
5 fnfun seqM+˙FFnMFunseqM+˙F
6 4 5 ax-mp FunseqM+˙F
7 4 fndmi domseqM+˙F=M
8 fvex MV
9 7 8 eqeltri domseqM+˙FV
10 1 rnex ran+˙V
11 prex FMV
12 10 11 unex ran+˙FMV
13 fveq2 y=MseqM+˙Fy=seqM+˙FM
14 13 eleq1d y=MseqM+˙Fyran+˙FMseqM+˙FMran+˙FM
15 fveq2 y=zseqM+˙Fy=seqM+˙Fz
16 15 eleq1d y=zseqM+˙Fyran+˙FMseqM+˙Fzran+˙FM
17 fveq2 y=z+1seqM+˙Fy=seqM+˙Fz+1
18 17 eleq1d y=z+1seqM+˙Fyran+˙FMseqM+˙Fz+1ran+˙FM
19 fveq2 y=xseqM+˙Fy=seqM+˙Fx
20 19 eleq1d y=xseqM+˙Fyran+˙FMseqM+˙Fxran+˙FM
21 seq1 MseqM+˙FM=FM
22 ssun2 FMran+˙FM
23 fvex FMV
24 23 prid2 FMFM
25 22 24 sselii FMran+˙FM
26 21 25 eqeltrdi MseqM+˙FMran+˙FM
27 seqp1 zMseqM+˙Fz+1=seqM+˙Fz+˙Fz+1
28 27 adantr zMseqM+˙Fzran+˙FMseqM+˙Fz+1=seqM+˙Fz+˙Fz+1
29 df-ov seqM+˙Fz+˙Fz+1=+˙seqM+˙FzFz+1
30 snsspr1 FM
31 unss2 FMran+˙ran+˙FM
32 30 31 ax-mp ran+˙ran+˙FM
33 fvrn0 +˙seqM+˙FzFz+1ran+˙
34 32 33 sselii +˙seqM+˙FzFz+1ran+˙FM
35 29 34 eqeltri seqM+˙Fz+˙Fz+1ran+˙FM
36 35 a1i zMseqM+˙Fzran+˙FMseqM+˙Fz+˙Fz+1ran+˙FM
37 28 36 eqeltrd zMseqM+˙Fzran+˙FMseqM+˙Fz+1ran+˙FM
38 37 ex zMseqM+˙Fzran+˙FMseqM+˙Fz+1ran+˙FM
39 14 16 18 20 26 38 uzind4 xMseqM+˙Fxran+˙FM
40 39 rgen xMseqM+˙Fxran+˙FM
41 fnfvrnss seqM+˙FFnMxMseqM+˙Fxran+˙FMranseqM+˙Fran+˙FM
42 4 40 41 mp2an ranseqM+˙Fran+˙FM
43 12 42 ssexi ranseqM+˙FV
44 funexw FunseqM+˙FdomseqM+˙FVranseqM+˙FVseqM+˙FV
45 6 9 43 44 mp3an seqM+˙FV