Metamath Proof Explorer


Theorem seqexw

Description: Weak version of seqex that holds without ax-rep . A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Hypotheses seqexw.1 + ˙ V
seqexw.2 M
Assertion seqexw seq M + ˙ F V

Proof

Step Hyp Ref Expression
1 seqexw.1 + ˙ V
2 seqexw.2 M
3 seqfn M seq M + ˙ F Fn M
4 2 3 ax-mp seq M + ˙ F Fn M
5 fnfun seq M + ˙ F Fn M Fun seq M + ˙ F
6 4 5 ax-mp Fun seq M + ˙ F
7 fndm seq M + ˙ F Fn M dom seq M + ˙ F = M
8 4 7 ax-mp dom seq M + ˙ F = M
9 fvex M V
10 8 9 eqeltri dom seq M + ˙ F V
11 1 rnex ran + ˙ V
12 prex F M V
13 11 12 unex ran + ˙ F M V
14 fveq2 y = M seq M + ˙ F y = seq M + ˙ F M
15 14 eleq1d y = M seq M + ˙ F y ran + ˙ F M seq M + ˙ F M ran + ˙ F M
16 fveq2 y = z seq M + ˙ F y = seq M + ˙ F z
17 16 eleq1d y = z seq M + ˙ F y ran + ˙ F M seq M + ˙ F z ran + ˙ F M
18 fveq2 y = z + 1 seq M + ˙ F y = seq M + ˙ F z + 1
19 18 eleq1d y = z + 1 seq M + ˙ F y ran + ˙ F M seq M + ˙ F z + 1 ran + ˙ F M
20 fveq2 y = x seq M + ˙ F y = seq M + ˙ F x
21 20 eleq1d y = x seq M + ˙ F y ran + ˙ F M seq M + ˙ F x ran + ˙ F M
22 seq1 M seq M + ˙ F M = F M
23 ssun2 F M ran + ˙ F M
24 fvex F M V
25 24 prid2 F M F M
26 23 25 sselii F M ran + ˙ F M
27 22 26 eqeltrdi M seq M + ˙ F M ran + ˙ F M
28 seqp1 z M seq M + ˙ F z + 1 = seq M + ˙ F z + ˙ F z + 1
29 28 adantr z M seq M + ˙ F z ran + ˙ F M seq M + ˙ F z + 1 = seq M + ˙ F z + ˙ F z + 1
30 df-ov seq M + ˙ F z + ˙ F z + 1 = + ˙ seq M + ˙ F z F z + 1
31 snsspr1 F M
32 unss2 F M ran + ˙ ran + ˙ F M
33 31 32 ax-mp ran + ˙ ran + ˙ F M
34 fvrn0 + ˙ seq M + ˙ F z F z + 1 ran + ˙
35 33 34 sselii + ˙ seq M + ˙ F z F z + 1 ran + ˙ F M
36 30 35 eqeltri seq M + ˙ F z + ˙ F z + 1 ran + ˙ F M
37 36 a1i z M seq M + ˙ F z ran + ˙ F M seq M + ˙ F z + ˙ F z + 1 ran + ˙ F M
38 29 37 eqeltrd z M seq M + ˙ F z ran + ˙ F M seq M + ˙ F z + 1 ran + ˙ F M
39 38 ex z M seq M + ˙ F z ran + ˙ F M seq M + ˙ F z + 1 ran + ˙ F M
40 15 17 19 21 27 39 uzind4 x M seq M + ˙ F x ran + ˙ F M
41 40 rgen x M seq M + ˙ F x ran + ˙ F M
42 fnfvrnss seq M + ˙ F Fn M x M seq M + ˙ F x ran + ˙ F M ran seq M + ˙ F ran + ˙ F M
43 4 41 42 mp2an ran seq M + ˙ F ran + ˙ F M
44 13 43 ssexi ran seq M + ˙ F V
45 funexw Fun seq M + ˙ F dom seq M + ˙ F V ran seq M + ˙ F V seq M + ˙ F V
46 6 10 44 45 mp3an seq M + ˙ F V