Metamath Proof Explorer


Theorem seqf1olem2a

Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses seqf1o.1 φxSySx+˙yS
seqf1o.2 φxCyCx+˙y=y+˙x
seqf1o.3 φxSySzSx+˙y+˙z=x+˙y+˙z
seqf1o.4 φNM
seqf1o.5 φCS
seqf1olem2a.1 φG:AC
seqf1olem2a.3 φKA
seqf1olem2a.4 φMNA
Assertion seqf1olem2a φGK+˙seqM+˙GN=seqM+˙GN+˙GK

Proof

Step Hyp Ref Expression
1 seqf1o.1 φxSySx+˙yS
2 seqf1o.2 φxCyCx+˙y=y+˙x
3 seqf1o.3 φxSySzSx+˙y+˙z=x+˙y+˙z
4 seqf1o.4 φNM
5 seqf1o.5 φCS
6 seqf1olem2a.1 φG:AC
7 seqf1olem2a.3 φKA
8 seqf1olem2a.4 φMNA
9 eluzfz2 NMNMN
10 4 9 syl φNMN
11 fveq2 m=MseqM+˙Gm=seqM+˙GM
12 11 oveq2d m=MGK+˙seqM+˙Gm=GK+˙seqM+˙GM
13 11 oveq1d m=MseqM+˙Gm+˙GK=seqM+˙GM+˙GK
14 12 13 eqeq12d m=MGK+˙seqM+˙Gm=seqM+˙Gm+˙GKGK+˙seqM+˙GM=seqM+˙GM+˙GK
15 14 imbi2d m=MφGK+˙seqM+˙Gm=seqM+˙Gm+˙GKφGK+˙seqM+˙GM=seqM+˙GM+˙GK
16 fveq2 m=nseqM+˙Gm=seqM+˙Gn
17 16 oveq2d m=nGK+˙seqM+˙Gm=GK+˙seqM+˙Gn
18 16 oveq1d m=nseqM+˙Gm+˙GK=seqM+˙Gn+˙GK
19 17 18 eqeq12d m=nGK+˙seqM+˙Gm=seqM+˙Gm+˙GKGK+˙seqM+˙Gn=seqM+˙Gn+˙GK
20 19 imbi2d m=nφGK+˙seqM+˙Gm=seqM+˙Gm+˙GKφGK+˙seqM+˙Gn=seqM+˙Gn+˙GK
21 fveq2 m=n+1seqM+˙Gm=seqM+˙Gn+1
22 21 oveq2d m=n+1GK+˙seqM+˙Gm=GK+˙seqM+˙Gn+1
23 21 oveq1d m=n+1seqM+˙Gm+˙GK=seqM+˙Gn+1+˙GK
24 22 23 eqeq12d m=n+1GK+˙seqM+˙Gm=seqM+˙Gm+˙GKGK+˙seqM+˙Gn+1=seqM+˙Gn+1+˙GK
25 24 imbi2d m=n+1φGK+˙seqM+˙Gm=seqM+˙Gm+˙GKφGK+˙seqM+˙Gn+1=seqM+˙Gn+1+˙GK
26 fveq2 m=NseqM+˙Gm=seqM+˙GN
27 26 oveq2d m=NGK+˙seqM+˙Gm=GK+˙seqM+˙GN
28 26 oveq1d m=NseqM+˙Gm+˙GK=seqM+˙GN+˙GK
29 27 28 eqeq12d m=NGK+˙seqM+˙Gm=seqM+˙Gm+˙GKGK+˙seqM+˙GN=seqM+˙GN+˙GK
30 29 imbi2d m=NφGK+˙seqM+˙Gm=seqM+˙Gm+˙GKφGK+˙seqM+˙GN=seqM+˙GN+˙GK
31 6 7 ffvelcdmd φGKC
32 eluzel2 NMM
33 seq1 MseqM+˙GM=GM
34 4 32 33 3syl φseqM+˙GM=GM
35 eluzfz1 NMMMN
36 4 35 syl φMMN
37 8 36 sseldd φMA
38 6 37 ffvelcdmd φGMC
39 34 38 eqeltrd φseqM+˙GMC
40 2 31 39 caovcomd φGK+˙seqM+˙GM=seqM+˙GM+˙GK
41 40 a1i NMφGK+˙seqM+˙GM=seqM+˙GM+˙GK
42 oveq1 GK+˙seqM+˙Gn=seqM+˙Gn+˙GKGK+˙seqM+˙Gn+˙Gn+1=seqM+˙Gn+˙GK+˙Gn+1
43 elfzouz nM..^NnM
44 43 adantl φnM..^NnM
45 seqp1 nMseqM+˙Gn+1=seqM+˙Gn+˙Gn+1
46 44 45 syl φnM..^NseqM+˙Gn+1=seqM+˙Gn+˙Gn+1
47 46 oveq2d φnM..^NGK+˙seqM+˙Gn+1=GK+˙seqM+˙Gn+˙Gn+1
48 3 adantlr φnM..^NxSySzSx+˙y+˙z=x+˙y+˙z
49 5 31 sseldd φGKS
50 49 adantr φnM..^NGKS
51 5 adantr φnM..^NCS
52 51 adantr φnM..^NxMnCS
53 6 adantr φnM..^NG:AC
54 53 adantr φnM..^NxMnG:AC
55 elfzouz2 nM..^NNn
56 55 adantl φnM..^NNn
57 fzss2 NnMnMN
58 56 57 syl φnM..^NMnMN
59 8 adantr φnM..^NMNA
60 58 59 sstrd φnM..^NMnA
61 60 sselda φnM..^NxMnxA
62 54 61 ffvelcdmd φnM..^NxMnGxC
63 52 62 sseldd φnM..^NxMnGxS
64 1 adantlr φnM..^NxSySx+˙yS
65 44 63 64 seqcl φnM..^NseqM+˙GnS
66 fzofzp1 nM..^Nn+1MN
67 66 adantl φnM..^Nn+1MN
68 59 67 sseldd φnM..^Nn+1A
69 53 68 ffvelcdmd φnM..^NGn+1C
70 51 69 sseldd φnM..^NGn+1S
71 48 50 65 70 caovassd φnM..^NGK+˙seqM+˙Gn+˙Gn+1=GK+˙seqM+˙Gn+˙Gn+1
72 47 71 eqtr4d φnM..^NGK+˙seqM+˙Gn+1=GK+˙seqM+˙Gn+˙Gn+1
73 48 65 70 50 caovassd φnM..^NseqM+˙Gn+˙Gn+1+˙GK=seqM+˙Gn+˙Gn+1+˙GK
74 46 oveq1d φnM..^NseqM+˙Gn+1+˙GK=seqM+˙Gn+˙Gn+1+˙GK
75 48 65 50 70 caovassd φnM..^NseqM+˙Gn+˙GK+˙Gn+1=seqM+˙Gn+˙GK+˙Gn+1
76 2 adantlr φnM..^NxCyCx+˙y=y+˙x
77 31 adantr φnM..^NGKC
78 76 69 77 caovcomd φnM..^NGn+1+˙GK=GK+˙Gn+1
79 78 oveq2d φnM..^NseqM+˙Gn+˙Gn+1+˙GK=seqM+˙Gn+˙GK+˙Gn+1
80 75 79 eqtr4d φnM..^NseqM+˙Gn+˙GK+˙Gn+1=seqM+˙Gn+˙Gn+1+˙GK
81 73 74 80 3eqtr4d φnM..^NseqM+˙Gn+1+˙GK=seqM+˙Gn+˙GK+˙Gn+1
82 72 81 eqeq12d φnM..^NGK+˙seqM+˙Gn+1=seqM+˙Gn+1+˙GKGK+˙seqM+˙Gn+˙Gn+1=seqM+˙Gn+˙GK+˙Gn+1
83 42 82 imbitrrid φnM..^NGK+˙seqM+˙Gn=seqM+˙Gn+˙GKGK+˙seqM+˙Gn+1=seqM+˙Gn+1+˙GK
84 83 expcom nM..^NφGK+˙seqM+˙Gn=seqM+˙Gn+˙GKGK+˙seqM+˙Gn+1=seqM+˙Gn+1+˙GK
85 84 a2d nM..^NφGK+˙seqM+˙Gn=seqM+˙Gn+˙GKφGK+˙seqM+˙Gn+1=seqM+˙Gn+1+˙GK
86 15 20 25 30 41 85 fzind2 NMNφGK+˙seqM+˙GN=seqM+˙GN+˙GK
87 10 86 mpcom φGK+˙seqM+˙GN=seqM+˙GN+˙GK