Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0repnf.x | |
|
sge0repnf.f | |
||
Assertion | sge0repnf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0repnf.x | |
|
2 | sge0repnf.f | |
|
3 | renepnf | |
|
4 | 3 | neneqd | |
5 | 4 | a1i | |
6 | rge0ssre | |
|
7 | 0xr | |
|
8 | 7 | a1i | |
9 | pnfxr | |
|
10 | 9 | a1i | |
11 | 1 2 | sge0xrcl | |
12 | 11 | adantr | |
13 | 1 2 | sge0ge0 | |
14 | 13 | adantr | |
15 | simpr | |
|
16 | nltpnft | |
|
17 | 11 16 | syl | |
18 | 17 | adantr | |
19 | 15 18 | mtbid | |
20 | 19 | notnotrd | |
21 | 8 10 12 14 20 | elicod | |
22 | 6 21 | sselid | |
23 | 22 | ex | |
24 | 5 23 | impbid | |