Metamath Proof Explorer


Theorem sge0repnf

Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0repnf.x φXV
sge0repnf.f φF:X0+∞
Assertion sge0repnf φsum^F¬sum^F=+∞

Proof

Step Hyp Ref Expression
1 sge0repnf.x φXV
2 sge0repnf.f φF:X0+∞
3 renepnf sum^Fsum^F+∞
4 3 neneqd sum^F¬sum^F=+∞
5 4 a1i φsum^F¬sum^F=+∞
6 rge0ssre 0+∞
7 0xr 0*
8 7 a1i φ¬sum^F=+∞0*
9 pnfxr +∞*
10 9 a1i φ¬sum^F=+∞+∞*
11 1 2 sge0xrcl φsum^F*
12 11 adantr φ¬sum^F=+∞sum^F*
13 1 2 sge0ge0 φ0sum^F
14 13 adantr φ¬sum^F=+∞0sum^F
15 simpr φ¬sum^F=+∞¬sum^F=+∞
16 nltpnft sum^F*sum^F=+∞¬sum^F<+∞
17 11 16 syl φsum^F=+∞¬sum^F<+∞
18 17 adantr φ¬sum^F=+∞sum^F=+∞¬sum^F<+∞
19 15 18 mtbid φ¬sum^F=+∞¬¬sum^F<+∞
20 19 notnotrd φ¬sum^F=+∞sum^F<+∞
21 8 10 12 14 20 elicod φ¬sum^F=+∞sum^F0+∞
22 6 21 sselid φ¬sum^F=+∞sum^F
23 22 ex φ¬sum^F=+∞sum^F
24 5 23 impbid φsum^F¬sum^F=+∞